Участник:Vokov

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Доклады на конференциях и семинарах)
(Доклады на конференциях и семинарах)
Строка 128: Строка 128:
''' 2024 '''
''' 2024 '''
 +
* 27 сентября 2024. Искусственный интеллект: обзорная лекция. [https://www.grsu.by Гродненский государственный университет имени Янки Купалы]. '''[[Media:Voron-2024-09-27.pdf|(PDF, 5.4Мб)]]'''.
* 26 сентября 2024. «Мастерская знаний»: большие языковые модели для поиска и систематизации научной информации. [[Интеллектуализация обработки информации (конференция)]]. Гродно, Беларусь. '''[[Media:Voron-2024-09-26.pdf|(PDF, 7.8Мб)]]'''.
* 26 сентября 2024. «Мастерская знаний»: большие языковые модели для поиска и систематизации научной информации. [[Интеллектуализация обработки информации (конференция)]]. Гродно, Беларусь. '''[[Media:Voron-2024-09-26.pdf|(PDF, 7.8Мб)]]'''.
* 27 августа 2024. Обзорный доклад по искусственному интеллекту. Класс-центр '''[[Media:Voron-2024-class-center.png|(PNG, 9.2Мб)]]''' '''[[Media:Voron-2024-class-center-mmap.rar|(MMAP, 17Мб)]]'''.
* 27 августа 2024. Обзорный доклад по искусственному интеллекту. Класс-центр '''[[Media:Voron-2024-class-center.png|(PNG, 9.2Мб)]]''' '''[[Media:Voron-2024-class-center-mmap.rar|(MMAP, 17Мб)]]'''.

Версия 17:38, 27 сентября 2024

Содержание

    Воронцов Константин Вячеславович

профессор РАН, д.ф.-м.н.,
проф., зав. каф. «Математические методы прогнозирования» ВМК МГУ,
зав. лаб. «Машинное обучение и семантический анализ» Института искусственного интеллекта МГУ
зав. каф. «Машинного обучения и цифровой гуманитаристики» МФТИ,
проф. каф. «Интеллектуальные системы» МФТИ (см.также),
г.н.с. отдела «Интеллектуальные системы» Вычислительного центра ФИЦ ИУ РАН,
один из идеологов и Администраторов ресурса MachineLearning.RU,
подробнее — на подстранице Curriculum vitæ.

Мне можно написать письмо.

http://www.MachineLearning.ru/wiki?title=User:Vokov — короткая ссылка на эту страницу.

Учебные материалы

Курсы лекций

Рекомендации для студентов и аспирантов

Каждый студент, с которым мы начинаем совместную научную работу, должен внимательно прочитать и осмыслить:

Другие методические материалы:

Интервью, выступления, блоги

Блоги

Видео, подкасты

Лонгриды

Российский радиоуниверситет, Радио России

Доклады на конференциях и семинарах

2024

2023

2022

  • 7 декабря 2022. Задачи понимания естественного языка: на пути к стандартизации разметки и оценивания моделей. Секционное научно-методическое заседание «Межотраслевые вопросы стандартизации искусственного интеллекта» Подкомитета 02 «Данные» (ПК02) Технического комитета по стандартизации «Искусственный интеллект» (ТК164), в рамках конференции ИОИ-14. (PDF, 2.4Мб).
  • 6 декабря 2022. От алгебраического подхода Ю.И.Журавлёва к ансамблированию моделей в широком смысле. Интеллектуализация обработки информации (конференция). (PDF, 2.9Мб).
  • 28 ноября 2022. Обзор оптимизационных задач машинного обучения: от персептрона до векторных представлений сложно структурированных данных. Научный симпозиум «Искусственный интеллект и его применения». Институт ИИ МГУ. (PDF, 3.6Мб).
  • 25 ноября 2022. Разметка данных для обучения нейросетевых моделей языка как способ формализации гуманитарных знаний. Школа прикладного анализа больших данных. Томский государственный университет. (PDF, 2.5Мб). Видеозапись.
  • 11 ноября 2022. Разметка данных для обучения нейросетевых моделей языка как способ формализации гуманитарных знаний. XVIII научная конференция межрегиональной ассоциации «История и компьютер» Историческая информатика как Historical Data Science. (PDF, 2.5Мб).
  • 27 октября 2022. Обзор задач искусственного интеллекта: от обучения персептрона до многокритериальной оптимизации векторных представлений сложно структурированных данных. Семинар Отделения математических наук РАН по проблемам искусственного интеллекта. (PDF, 3.7Мб). Видеозапись.
  • 12 октября 2022. Стандартизация разметки текста и оценивания предсказательных моделей в задачах понимания естественного языка. Конгресс «Humanities vs sciences & the knowledge accelerating in modern world: parallels and interaction». (PDF, 2.2Мб). Видеозапись.
  • 8 октября 2022. Искусственный интеллект: мифы, реальность, перспективы. Всероссийский Фестиваль «Наука 0+». (PDF, 5.1Мб).
  • 16 августа 2022. Обучаемая векторизация данных как основа нейросетевых технологий искусственного интеллекта. Международный военно-технический форум «АРМИЯ-2022». Секция №3 «Научная проблематика в области искусственного интеллекта» (PDF, 4.8Мб).
  • 20 мая 2022. Технологии искусственного интеллекта и безопасность информационного пространства. Международный конгресс Университетского консорциума исследователей больших данных. г.Киров, ВятГУ. (PDF, 1.7Мб). Видеозапись.
  • 20 мая 2022. Технологии искусственного интеллекта против фейков, постправды и информационных войн. Заседание Экспертного совета по развитию цифровой экономики, технологий и инноваций Молодёжного парламента при Государственной думе Федерального Собрания РФ по теме «Защита суверенного информационного пространства: правовые, научно-технические и организационные меры». (PDF, 1.6Мб).
  • 18 мая 2022. Вероятностные тематические модели: от теории регуляризации к моделям внимания. XII Международная молодёжная научно-практическая конференция с элементами научной школы «Прикладная математика и фундаментальная информатика». Омский ГТУ. (PDF, 7.1Мб).
  • 17 мая 2022. Современные методы и проблемы тематического моделирования и разведочного поиска. Ежегодная конференция Российской библиотечной ассоциации XXVI. Совместное заседание: секция 08/11 по автоматизации, форматам и каталогизации 23-К. (PDF, 1.7Мб). Видеозапись.
  • 14 апреля 2022. Технологии искусственного интеллекта против политики постправды. Международная научно-практическая конференция «Цифровые международные отношения». Секция «Машинный анализ естественного языка в международных отношениях». (PDF, 1.5Мб). Видеозапись.
  • 17 марта 2022. Тематическое моделирование для информационного поиска. Научный семинар Центра прикладного анализа больших данных Томского государственного университета. (PDF, 2.7Мб). Видеозапись.
  • 31 января 2022. Задачи выявления речевых манипуляций и поляризации общественного мнения в новостных текстах. Научный семинар Центра прикладного анализа больших данных Томского государственного университета. (PDF, 1.1Мб). Видеозапись.
  • 7 января 2022. STEM-дисциплины (Science, Technology, Engineering, Math) – основа настоящего образования? Московская школа управления СКОЛКОВО, Образовательный интенсив «Ты. Университет. Будущее». (PDF, 2.8Мб).

2021

2020

2019

2018

2017

2016

2015

2014

2013

  • 31 октября 2013. Аддитивная регуляризация вероятностных тематических моделей. Доклад на семинаре БММО-2013, ВМК МГУ. (PDF, 1.6 МБ).
  • 7 октября 2013. Аддитивная регуляризация вероятностных тематических моделей. Доклад на конференции ММРО-16, Казань. (PDF, 1.1 МБ).
  • 2 октября 2013. Combinatorial theory of overfitting. How Connectivity and Splitting Reduces the Local Complexity Measures of Complexity Symposium (PDF, 1.7 MБ).
  • 27 сентября 2013. Combinatorial theory of overfitting. The Yandex School of Data Analysis conference (PDF, 1.7 MБ), Аннотация и видеозапись.
  • 28 июня 2013. Combinatorial theory of overfitting. International Workshop on Statistical Learning IWSL (PDF, 1.5 MБ).
  • 23 апреля 2013. Вероятностные тематические модели коллекций текстовых документов. Доклад на семинаре в ВИНИТИ РАН. (PDF, 2.0 МБ).
  • 13 апреля 2013. Комбинаторная теория переобучения. Семинар в НМУ. (PDF, 3.5 МБ). Дополнение: Евгений Соколов. Линейные классификаторы и случайные блуждания. (PDF, 380 KБ)
  • 26 февраля 2013. Вероятностные тематические модели коллекций текстовых документов. Просеминар кафедры ММП, Москва, МГУ. (PDF, 0.8 МБ).

2012

  • 26 сентября, 3 октября 2012. Четыре лекции по машинному обучению. Высшая Школа Экономики. (PDF, 2.9 МБ).
  • 17 сентября 2012. Регуляризация, робастность и разреженность вероятностных тематических моделей. Доклад на конференции ИОИ-9. (PDF, 0.9 МБ).
  • 24 мая 2012. Комбинаторная теория переобучения и её применения. Семинар лаборатории PreMoLab, Москва, ИППИ РАН. (PDF, 3.0 МБ).
  • 27 февраля 2012. Комбинаторная теория переобучения и её применения. Просеминар кафедры ММП, Москва, МГУ. (PDF, 2.5 МБ).

2011

  • 19 октября 2011. Задачи анализа данных ДНК-микрочипов. Доклад на семинаре «Время, хаос и математические проблемы» (руководитель академик В.А.Садовничий), Москва, МГУ. (PDF, 3 МБ).
  • 12 сентября 2011. Комбинаторная теория переобучения и поиск логических закономерностей. Доклад на конференции ММРО-15, Петрозаводск. (PDF, 1.4 МБ).
  • 27,29 июня 2011. Recent Advances on Generalization Bounds. Tutorial. International conference PReMI-2011 Part 1 (PDF, 1.0 MБ), Part 2 (PDF, 1.5 MБ). Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules (PDF, 0.6 MБ, на английском).
  • 12 января 2011. Интеллектуальный анализ данных и объектно-ориентированное программирование. Лекция на Зимней компьютерной школе 2011, МФТИ. (PDF, 1.0 МБ).

2010

  • 7 ноября 2010. Generalization bounds based on the splitting and connectivity properties of a set of classifiers. International conference PRIA-10 (PDF, 1.4 MБ, на английском).
  • 20 октября 2010. Точные комбинаторные оценки обобщающей способности онлайнового обучения. Конференция ИОИ-8 (PDF, 400 KБ).
  • 18 октября 2010. Комбинаторный подход к выводу точных оценок вероятности переобучения. Конференция ИОИ-8 (PDF, 1.2 MБ).
  • 22 апреля 2010. Комбинаторная теория надёжности обучения по прецедентам. Защита докторской диссертации. (PDF, 1760 КБ). Учёный совет квалифицировал работу как новое направление в теории статистического обучения.
  • 3 марта 2010. Интеллектуальный анализ данных и распознавание образов. Теоретические и практические проблемы. Доклад на семинаре «Глобальные изменения климата» (руководители академик Г.И.Марчук, академик В.П.Дымников), Москва, ИВМ. (PDF, 828 КБ).
  • 13 января 2010. Задачи и методы машинного обучения. Лекция на Зимней компьютерной школе 2010, МФТИ. (PDF, 1023 КБ).

2009

  • 22 сентября 2009. Комбинаторный подход к проблеме переобучения. Доклад на конференции ММРО-14, Суздаль. (PDF, 1106 КБ).
  • 27 июля 2009. Методы машинного обучения, основанные на индукции правил (логические методы классификации). Доклад на семинаре Знания и онтологии ELSEWHERE, Москва, ВШЭ. (PDF, 1202 КБ).

2008

2003–2007

  • 30 сентября 2007. Слабая вероятностная аксиоматика и надёжность эмпирических предсказаний. Конференция ММРО-13. (PDF, 910 КБ).
  • 20 august 2007. 7th Open German/Russian Workshop (OGRW-7) on Pattern Recognition and Image Understanding, Ettlingen, Germany. Combinatorial Approach to Generalization Bounds Tightening. (PDF, 1.9 МБ, на английском).
  • 4 июня 2006. Прикладные исследования и разработки компании Форексис в области интеллектуального анализа данных. Конференция ИОИ-2006, Крым, Алушта. (PDF, 460 КБ)
  • 5 ноября 2005. Измерение локальной эффективной функции роста в задачах поиска логических закономерностей. Конференция ММРО-12. (PDF, 285 КБ), вместе с речью — (PDF, 308 КБ).
  • 14 июня 2004. Комбинаторный подход к оцениванию качества алгоритмов, обучаемых по прецедентам. Конференция ИОИ-2004, Крым, Алушта. (PDF, 520 КБ).
  • 28 ноября 2003. Комбинаторные оценки качества обучения по прецедентам. Конференция ММРО-11. (PDF, 680 КБ).

Научные интересы

Всё, что скрывается за терминами «науки о данных» (data science), «интеллектуальный анализ данных» (data mining) и «машинное обучение» (machine learning): распознавание образов, прогнозирование, математическая статистика, дискретная математика, численные методы оптимизации, аналитика больших данных, а также практический анализ данных в разнообразных областях (медицина, техника, биоинформатика, экономика, лингвистика, интернет).

Анализ текстов и информационный поиск

Современные средства текстового поиска предназначены для ответов на короткие текстовые запросы. Этого не достаточно при самообразовании и поиске научной информации, в особенности новой или содержащей неизвестную пользователю терминологию. Поиск и мониторинг новых тенденций, терминологии, профессиональных сообществ всё ещё требует больших затрат времени и высокой квалификации. Существует барьер входа в новую профессиональную область. Ответ на вопрос «где находится передний край науки по данной теме» по-прежнему достигается, главным образом, путём личного общения, следовательно, субъективен и не общедоступен. Наш подход к исследовательскому поиску (Exploratory Search) основан на концепции Мастерской Знаний. Это среда для поиска, анализа и переработки больших объёмов текстовой информации. В ней пользователь «мастерит» тематические текстовые подборки. Мастерская помогает ему расширять подборку, писать по ней рефераты и обзоры, выделять ключевые понятия и факты, систематизировать по темам, строить графические визуализации в виде «карты знаний». Миссия проекта — убирать барьеры между человеком и знанием. В Мастерской применяются разнообразные технологии обработки естественного языка (NLP).

Вероятностное тематическое моделирование (Probabilistic Topic Modeling) служит для выявления тематики больших текстовых коллекций и определения, к каким темам относится каждый текстовый документ. Также оно находит всё больше неожиданных применений в областях, далёких от анализа текстов: при обработке изображений и видео, звуковых и биомедицинских сигналов, нуклеотидных и аминокислотных последовательностей, пользовательских логов, финансовых и транзакционных данных.

Основные направления исследований и разработок

  • теория и методы аддитивной регуляризации тематических моделей (ARTM);
  • разработка BigARTM — библиотеки с открытым кодом для тематического моделирования больших коллекций;
  • разработка инструментальной среды для тематического моделирования TopicNet;
  • разработка поисково-рекомендательной системы SciSearch.ai;
  • автоматическое выделения терминов-словосочетаний в текстах;
  • тематические модели последовательного текста, тематической структуры и сегментации текстов;
  • мультимодальные тематические модели, классификация и регрессия с текстовыми и разреженными признаками;
  • иерархические тематические модели и категоризация текстов;
  • методы визуализации тематических моделей;
  • методы автоматического именования тем;
  • проблемы сходимости и устойчивости численных методов матричных и тензорных разложений;
  • проблемы интерпретируемости тем;
  • мультиязычные тематические модели;
  • тематические модели транзакционных данных или гиперграфов;
  • анализ тональности и разделение тем на полярные мнения;
  • темпоральные (динамические) тематические модели;
  • автоматическое оценивание когнитивной сложности текста;

Прикладные задачи

  • иерархическая тематическая модель научного и научно-популярного контента;
  • тематический исследовательский информационный поиск;
  • полуавтоматическое реферирование тематических подборок научных статей;
  • классификация и динамическая тематизация новостных потоков;
  • модели символьной динамики для анализа дискретных временных рядов;
  • тематическая кластеризация отзывов клиентов или опросов персонала;
  • классификация и сценарный анализ записей разговоров контактного центра;
  • выявления паттернов потребительского поведения клиентов по банковским транзакциям;
  • выявление видов экономической деятельности компаний по банковским транзакциям;

Ключевые слова

  • text analysis, information retrieval, keyphrase extraction, topic modeling, probabilistic latent semantic analysis (PLSA), latent Dirichlet allocation (LDA), Gibbs sampling, documents categorization, learning to rank, research trends, research front.

Материалы и задания

Фейковые новости и потенциально опасный дискурс

Постправда — это политика игнорирования фактов, использования фейковых новостей и приёмов пропаганды для формирования общественного мнения. Опасность постправды в том, что она навязывает социуму ложную картину мира и вынуждает людей принимать невыгодные для них решения. Блогосфера и социальные сети способствуют распространению фейков, лженаучных и мифологизированных представлений о мире. Средства массовой информации всё чаще используются для ведения информационных войн между корпорациями, государствами и идеологиями. Создание технологий, способных противостоять некритичному восприятию постправды, становится фундаментально важной задачей. Речь идёт об использовании технологий машинного обучения и автоматической обработки текстов для выявления манипулятивных приёмов, обмана, слухов, сплетен, мистификаций, противоречий, замалчивания, мифологизации и идеологизации. Мы называем эти явления потенциально опасным дискурсом. Их необходимо не только выявлять, но и оценивать степень их опасности, и на какие целевые аудитории направлено воздействие. Исследование носит междисциплинарный характер и предполагает тесное взаимодействие с лингвистами, журналистами, политологами, психологами.

Основные направления исследований и разработок:

  • распознавание фейков в новостях;
  • распознавание пропаганды и приёмов информационной войны;
  • поиск противоречивых оценок и интерпретаций одних и тех же событий в различных источниках;
  • выявление манипулятивных приёмов в тексте;
  • классификация психоэмоциональных реакций целевых аудиторий на текстовое сообщение;
  • выявление конструктов мифологизированной/идеологизированной картины мира (мифологем/идеологем);
  • модели классификации текстов, пар текстов и фрагментов текстов по размеченным выборкам;
  • методы активного обучения для формирования неразмеченных выборок в краудсорсинге;
  • разработка открытых библиотек для выявления и анализа потенциально опасного дискурса.

Материалы

Отслеживание контактов и оценка рисков инфицирования

В условиях пандемии перед производственными предприятиями и организациями встают вопросы: какие противоэпидемиологические мероприятия провести, чтобы минимизировать потери, избежать локдауна или максимально эффективно из него выйти. Кого в первую очередь тестировать, кого отправлять на карантин, кого вакцинировать, для всех ли сотрудников масочно-перчаточный режим строго обязателен. Ответы на эти вопросы не универсальны и зависят от структуры контактов на конкретном предприятии. В проекте используются данные о контактах, предоставленные компанией Софттри в рамках проекта Amuleit, для моделирования распространения инфекции по графу контактов и сравнения эффективности различных мероприятий. Для оценивания индивидуального риска инфицирования строятся вероятностные модели по обучающим выборкам, сформированным имитационной моделью распространения инфекции по графу контактов. Оценки индивидуального риска позволяют формировать приоритетные списки людей для тестирования и вакцинации, и тем самым существенно сокращать затраты и повышать эффективность противоэпидемических мероприятий.

Основные направления исследований и разработок:

  • имитационное моделирование распространения инфекции по заданному динамическому графу контактов;
  • имитационное моделирование для генерирования динамического графа контактов;
  • вероятностные модели риска с прямым и обратным отслеживанием контактов;
  • методы инкрементного обучения вероятностной модели индивидуального риска инфицирования;
  • оценивание результативности противоэпидемиологических мероприятий с помощью имитационного моделирования.

Материалы

Теория обобщающей способности

Проблема обобщающей способности является ключевой и в то же время наиболее сложной в машинном обучении. Её даже выделяют в отдельную дисциплину — теорию вычислительного обучения. Если алгоритм, восстанавливающий некоторую неизвестную зависимость, построен по конечной обучающей выборке прецедентов, то как предсказать качество его работы на контрольной выборке, состоящей из новых прецедентов? Почему это вообще возможно? Как надо обучать алгоритм, чтобы он редко ошибался на новых данных?

Активное исследование этих вопросов началось в конце 60-х, когда В.Н.Вапник и А.Я.Червоненкис предложили статистическую теорию восстановления зависимостей по эмпирическим данным (VC theory) и получили верхние оценки вероятности ошибки обученного алгоритма (VC-bounds). Эти оценки позволили обосновать давно замеченный эмпирический факт: по мере увеличения сложности используемого семейства алгоритмов качество обучения сначала улучшается, затем начинает ухудшаться. Ухудшение связано с эффектом переобучения. Если алгоритм имеет избыточное число параметров («степеней свободы»), то он может слишком точно настроиться на конкретную обучающую выборку в ущерб качеству восстановления зависимости в целом. В теории Вапника-Червоненкиса разработан метод структурной минимизации риска (СМР), позволяющий автоматически находить модель оптимальной сложности. К сожалению, оценки вероятности ошибки чрезвычайно завышены (осторожны, пессимистичны), что может приводить к переупрощению модели в методе СМР. Несмотря на 40-летние усилия многих ученых и существенное усложнение математического аппарата, точные оценки до сих пор не были получены.

Комбинаторная теория переобучения — это принципиально новый подход, основанный на слабой вероятностной аксиоматике, впервые позволивший получить точные (не завышенные, не асимптотические) комбинаторные оценки вероятности переобучения и показать ключевую роль эффектов расслоения и сходства в семействах алгоритмов. Пока что точные оценки получены лишь для ряда модельных семейств алгоритмов, обладающих некоторой регулярной структурой. Для реальных смейств удалось получить верхние оценки расслоения-связности — SC-оценки (splitting and connectivity bounds). Они завышены в разы, тогда как VC-оценки завышены на 5–8 порядков. Для некоторых модельных семейств SC-оценки являются точными. Тем не менее, проблемы остаются, и дело не только в завышенности оценок. Во-первых, SC-оценки могут быть ненаблюдаемыми, то есть в них могут входить некоторые функции от скрытых контрольных данных. Эти функции вполне можно оценивать по наблюдаемым обучающим данным, но это дополнительная работа. Во-вторых, SC-оценки могут быть вычислительно неэффективными и требовать неадекватно больших затрат памяти и времени. Получение приближённых или асимптотических SC-оценок гарантированной точности также является отдельной работой.

Пока имеется лишь два примера практического применения комбинаторных оценок обобщающей способности:

  • Модификация критериев информативности для уменьшения переобучения конъюнктивных закономерностей в логических алгоритмах классификации (Андрей Ивахненко).
  • Эффективный алгоритм отбора эталонных объектов в методе ближайших соседей (Максим Иванов).

Основная цель дальнейших исследований — доведение комбинаторной теории переобучения до уровня практической применимости.

Основные направления исследований:

  • разработка математической техники для перехода от ненаблюдаемых оценок к наблюдаемым (возможно, как на основе комбинаторики, так и на основе теории концентрации вероятностной меры);
  • исследование комбинаторно-статистических свойств графа расслоения-связности модельных и реальных семейств алгоритмов.
  • получение оценок вероятности переобучения через наблюдаемый профиль расслоения-связности;
  • разработка эффективных методов оценивания нижних слоёв профиля расслоения-связности в конкретных методах обучения;
  • разработка логических алгоритмов классификации с управляемой переобученностью логических закономерностей;
  • развитие понятия «плотности» семейства алгоритмов и изучение возможности аппроксимации «плотных» семейств их «разреженными» подсемействами малой мощности;
  • развитие понятия «комбинаторного отступа» и его использование для повышения обобщающей способности линейных классификаторов;
  • развитие понятия локальной радемахеровской сложности для более аккуратного учёта эффектов расслоения и сходства;
  • обобщение понятий расслоения и сходства алгоритмов для непрерывных функций потерь;
  • разработка эффективных метрических алгоритмов классификации на основе комбинаторных оценок полного скользящего контроля;
  • исследование связи профилей компактности с функциями конкурентного сходства;
  • разработка методики тестирования и анализа обобщающей способности для «Полигона алгоритмов классификации».

Материалы:

Ключевые слова: overfitting, generalization bounds, computational learning theory, Vapnik-Chervonenkis theory, local Rademacher complexity.

Комбинаторная (перестановочная) статистика

Это направление логично вытекает из предыдущего и является его обобщением. Оказывается, многие фундаментальные факты теории вероятностей и математической статистики можно переформулировать и доказать, не опираясь на колмогоровскую аксиоматику, то есть не используя теорию меры, и даже не употребляя само понятие вероятности. В задачах анализа данных мы всегда имеем дело с выборками конечной длины. Поэтому естественно ставить вопрос не «какова вероятность события?», а «какой может быть частота этого события на скрытых (пока еще не известных) данных?». Ответы на эти два вопроса, вообще говоря, различны, причем на выборках малой длины различие существенно. Вероятность события — абстрактная идеализированная величина. Частота события — это как раз то, что реально измеряется в эксперименте. Именно её и имеет смысл оценивать (предсказывать).

Слабая вероятностная аксиоматика основана на одной единственной аксиоме: рассматривается конечная выборка неслучайных объектов, которые появляются в случайном порядке, причём все перестановки равновероятны. Событие — это бинарная функция на множестве всех перестановок выборки. Вероятность события определяется как доля перестановок выборки, при которых эта бинарная функция принимает единичное значение (т.е. событие имеет место).

В слабой аксиоматике удаётся переформулировать значительную часть фундаментальных результатов теории вероятностей и математической статистики, оносящихся к конечным выборкам независимых наблюдений. В их числе: закон больших чисел, закон сходимости эмпирических распределений (критерий Смирнова), многие непараметрические, ранговые и перестановочные статические критерии, теория обобщающей способности, теория информации. Во многих случаях получаемые оценки являются точными, т.е. не асимптотическими и не завышенными. Многие результаты сильно упрощаются, освобождаясь от второстепенных технических усложнений, связанных с теорией меры. Например, отпадает необходимость введения различных типов сходимости.

Основные направления исследований:

  • выяснение границ применимости слабой вероятностной аксиоматики;
  • точные (комбинаторные) статистические тесты;
  • эффективные алгоритмы вычисления комбинаторных оценок;
  • исследование других вероятностных предположений, кроме равновероятности всех перестановок;
  • множественное тестирование статистических гипотез и его связь с проблемой переобучения.

Ключевые слова: exchangeability, permutational statistics, concentration of probability measure.

Прогнозирование объёмов продаж

Задачи прогнозирования объёмов продаж в сетях супермаркетов характеризуются огромным количеством временных рядов, фактической невозможностью использования классических ресурсоёмких методов прогнозирования, несимметричностью функции потерь, разнородностью и нестационарностью временных рядов, наличием пропусков и неточностей в данных, возможностью привлечения дополнительной информации о структуре ассортимента, географии продаж, ценах, промо-акциях и поведении конкурентов.

Основные направления исследований:

  • адаптивные методы краткосрочного прогнозирования при несимметричной функции потерь;
  • адаптивные композиции алгоритмов прогнозирования при несимметричной функции потерь;
  • адаптивные методы прогнозирования плотности распределения;
  • адаптивные методы квантильной регрессии;
  • поиск взаимозаменяемых товаров, анализ и прогнозирование каннибализации брендов.

Материалы:

Ключевые слова: sales forecast, density forecast, forecasting under asymmetric loss, quantile regression.

Другие проекты и семинары

(в значительной степени устаревшие)

Виртуальные семинары

Материалы для преподавателей

Семинары

Публикации

Основное

Всё остальное

Софт и проекты

  • ChartLib — Библиотека деловой и научной графики (1998-2008)

Удобный инструмент для аналитических исследований, генерации графиков в Internet, подготовки отчетов, выполнения курсовых и дипломных работ, встраивания графиков в приложения на Delphi и C#. Имеет собственный формат входных данных CHD (CHart Description), позволяющий описывать как таблицы данных, так и внешний вид графика. Поддерживается более 150 команд, более 50 свойств точек графика, имеется встроенный калькулятор арифметических выражений. Графики могут быть выведены в окно прикладной программы, на принтер, в буфер обмена, в файлы графических форматов BMP, EMF, PNG, JPEG, GIF. Имеется программа chdView.exe для просмотра CHD-файлов.

Страница: ChartLib
Документация: на сайте ВЦ РАН (надо вручную переключиться на KOI8-R)
  • BigARTM — Открытая библиотека тематического моделирования (текущий проект)

Параллельная распределённая реализация методов вероятностного тематического моделирования на основе аддитивной регуляризации. Реализация ядра библиотеки на С++, интерфейсы на C++, Python. Позволяет добавлять новые регуляризаторы и метрики качества.

Страница: github.com/bigartm
Документация: bigartm.org
Архитектор проекта Александр Фрей
  • TopicNet — Открытая библиотека тематического моделирования под Python (текущий проект)

Верхнеуровневая обёртка над BigARTM, упрощающая построение тематических моделей в прикладных проектах и автоматизирующая проведение вычислительных экспериментов по оптимизации моделей.

Страница: github.com/machine-intelligence-laboratory/TopicNet
Разработка лаборатории машинного интеллекта МФТИ
  • SciSearch.ai — пилотный проект «Мастерской знаний» (текущий проект)

Поисково-рекомендательная система для формирования и анализа тематических подборок англоязычных научных статей.

Аспиранты и студенты

Аспиранты МФТИ МГУ
  • Илья Жариков

  • Юлиан Сердюк

  • Василий Алексеев
  • Полина Потапова
  • Олег Сомов
  • Николай Герасименко
  • Кирилл Хрыльченко

  • Дарья Соболева
  • Николай Скачков

  • Светлана Крыжановская
  • Алексей Гришанов
  • Виктор Панкратов

  • Иван Лукьяненко
  • Георгий Жаров
  • Арсений Веселов

  • Анна Балакова
  • Евгений Косарев
  • Сергей Артамонов

  • Воробьев Сергей
  • Дзюба Мария
  • Морозов Ярослав

  • Авдеев Роман
  • Мелихов Дмитрий
  • Панин Никита
  • Черникова Полина

Бакалаврские диссертации

  1. Дмитрий Иванцов. Новые методы технического анализа фьючерсных рынков. 2003. МФТИ.
  2. Рустем Таханов. Некоторые комбинаторные оценки качества обучения по прецедентам. 2004. МФТИ.
  3. Дмитрий Житлухин. О некоторых алгоритмах синтеза неэквивалентных матриц Адамара. 2005. МФТИ.
  4. Андрей Ивахненко. Исследование обобщающей способности логических алгоритмов классификации. 2005. МФТИ.
  5. Василий Лексин. Методы выявления взаимосогласованных структур сходства в системах взаимодействующих объектов. 2005. МФТИ.
  6. Фёдор Ульянов. Связь информативности и обобщающей способности в метрических алгоритмах классификации. 2005. МФТИ.
  7. Сергей Ументаев. Алгоритмы динамического обучения принятию решений в сильно зашумлённых временных рядах. 2005. МФТИ.
  8. Иван Гуз. Алгоритмические композиции с монотонными и выпуклыми корректирующими операциями. 2006. МФТИ.
  9. Александр Маценов. Методы обучения линейных композиций алгоритмов классификации. 2006. МФТИ.
  10. Никита Пустовойтов. Обучение композиций дипольных классификаторов на основе ЕМ-алгоритма. 2007. МФТИ.
  11. Александр Климов. Методы предсказания рейтингов в рекомендующих системах. 2007. МФТИ.
  12. Александр Орлов. Проблема переобучения при отборе признаков в линейной регрессии с фиксированными коэффициентами. 2007. МФТИ.
  13. Артур Коваль. Прогнозирование временных рядов с несимметричным функционалом потерь. 2007. МФТИ.
  14. Александр Ширяев. Выбор опорных множеств в алгоритмах типа вычисления оценок: нейросетевой подход. 2007. ВМК МГУ.
  15. Ирина Лебедева. Об одном методе статистически обоснованного сравнения временных рядов доходности паевых инвестиционных фондов. 2008. МФТИ.
  16. Александр Фрей. О дискретных аппроксимациях непрерывных вероятностных распределений. 2008. МФТИ.
  17. Кирилл Чувилин. Проблема переобучения при отборе признаков по внешним критериям в многомерной линейной регрессии. 2008. МФТИ.
  18. Пётр Цюрмасто. Влияние различности алгоритмов на обобщающую способность метода минимизации эмпирического риска. 2008. МФТИ.
  19. Андрей Бадзян. Комбинаторный аналог неравенства МакДиармида и обобщающая способность стабильных алгоритмов. 2008. МФТИ.
  20. Анастасия Зухба. Метрические алгоритмы классификации с отбором опорных объектов. 2009. МФТИ.
  21. Павел Минаев. Расширенная методика тестирования алгоритмов классификации. 2009. МФТИ.
  22. Алексей Романенко. Адаптивный выбор оптимальной модели временного ряда на основе множества статистических критериев. 2009. МФТИ.
  23. Алексей Куренной. Распознавание цитат в текстовых фрагментах. 2009. ВМК МГУ.
  24. Никита Спирин. Монотонные композиции алгоритмов ранжирования. 2010. МФТИ.
  25. Юрий Янович. Оценивание скрытого профиля компактности в задачах обучения методом ближайшего соседа. 2010. МФТИ.
  26. Алексей Островский. Эмпирическое исследование линейных и монотонных композиций алгоритмов ранжирования. 2010. МФТИ.
  27. Игорь Литвинов. Адаптивные методы квантильной регрессии для прогнозирования временных рядов. 2010. МФТИ.
  28. Евгений Зайцев. Прогнозирование средних скоростей движения в городской автотранспортной сети. 2011. МФТИ.
  29. Никита Животовский. Вероятность большого отклонения частоты ошибок на тестовой выборке от оценки скользящего контроля. 2011. МФТИ.
  30. Александр Мафусалов. Комбинаторные оценки вероятности переобучения пороговых классификаторов. 2011. МФТИ.
  31. Александр Фирстенко. Методы выделения терминов и тематической классификации текстовых документов. 2011. МФТИ.
  32. Михаил Кокшаров. Комбинаторные оценки обобщающей способности на основе попарного сравнения алгоритмов. 2012. МФТИ.
  33. Михаил Бурмистров. Методы оптимизации параметров вероятностных тематических моделей. 2012. МФТИ.
  34. Александр Романенко. Категоризация текстов на основе монотонного классификатора ближайшего соседа. 2012. МФТИ.
  35. Илья Ямщиков. Методы обучаемого ранжирования для поиска релевантных алгоритмов классификации. 2012. МФТИ.
  36. Ильдар Газизов. Проект информационно-аналитической системы для поддержки консультирования по функционально-ролевой модели бизнеса. 2012. МФТИ.
  37. Степан Лобастов. Построение тематической классификации коллекции документов с неизвестным числом тем, презентация. 2013. МФТИ.
  38. Влада Целых. Статистические критерии адекватности вероятностных тематических моделей коллекции текстовых документов, презентация. 2013. МФТИ.
  39. Светлана Цыганова. Выявление несогласованностей в иерархической тематической модели с фиксированной иерархией. 2013. МФТИ.
  40. Александр Бырдин. Классификация текстовых объявлений. 2014. МФТИ.
  41. Сергей Воронов. Фильтрация и тематическое моделирование коллекции научных документов. 2014. МФТИ.
  42. Олег Гринчук. Классификация нестационарного потока текстовых объявлений, презентация. 2014. МФТИ.
  43. Кирилл Неклюдов. Обнаружение аномалий в дискретных временных рядах, презентация. 2014. МФТИ.
  44. Мария Рыскина. Регуляризация вероятностных тематических моделей для повышения устойчивости и интерпретируемости. 2014. МФТИ.
  45. Даниил Яшков. Методы понижения размерности в задаче поиска аномалий в многомерных временных рядах, презентация. 2014. МФТИ.
  46. Андрей Шапулин. Регуляризация вероятностных тематических моделей для классификации символьных последовательностей. 2015. ВМК МГУ.
  47. Михаил Хальман. Методы персонализации показа объявлений в рекламной сети. 2015. ВМК МГУ.
  48. Никита Дойков. Адаптивная регуляризация вероятностных тематических моделей. 2015. ВМК МГУ.
  49. Мурат Апишев. Мультимодальные регуляризованные вероятностные тематические модели. 2015. ВМК МГУ.
  50. Александра Кузнецова. Методы регуляризации для отбора признаков в линейных классификаторах и их применение в банковской клиентской аналитике. 2015. ВШЭ.
  51. Алексей Гринчук. Использование контекстной документной кластеризации для улучшения качества тематических моделей. 2015. МФТИ.
  52. Ирина Ефимова. Формирование однородных обучающих выборок в задачах классификации. 2015. МФТИ.
  53. Андрей Игнатов. Deep Learning in information analysis of electrocardiogram signals for disease diagnostics. 2015. МФТИ.
  54. Анна Липатова. Выделение мультиграммных признаков в задачах классификации символьных последовательностей. 2015. МФТИ.
  55. Анастасия Макарова. Выделение информативных признаков заболеваний в информационном анализе электрокардиосигналов. 2015. МФТИ.
  56. Александр Плавин. Отбор тем в задачах тематического моделирования. 2015. МФТИ.
  57. Михаил Швец. Монотонные классификаторы для задач медицинской диагностики. 2015. МФТИ.
  58. Михаил Шинкевич. Применение коллаборативной фильтрации, активного обучения и навигационной корреляции в задаче выделения селекторов. 2015. МФТИ.
  59. Надежда Чиркова. Иерархические тематические модели для интерактивной навигации по коллекциям текстовых документов. 2016. ВМК МГУ.
  60. Никита Шаповалов. Тематические модели для классификации символьных последовательностей в задачах биоинформатики и анализа биомедицинских сигналов. 2016. ВМК МГУ.
  61. Юлия Молчанова. Проверка адекватности тематических моделей в онлайновых алгоритмах. 2016. ВМК МГУ.
  62. Иван Ивашковский. Методы инициализации в вероятностном тематическом моделировании. 2016. ФИВТ МФТИ.
  63. Анастасия Янина. Мультимодальные тематические модели статей коллективных блогов для разведочного поиска. 2016. ФИВТ МФТИ.
  64. Илья Жариков. Статистические тесты однородности символьных последовательностей. 2016. ФУПМ МФТИ.
  65. Евгений Смирнов. Суммаризация тем в вероятностном тематическом моделировании. 2016. ФУПМ МФТИ.
  66. Светлана Шишковец. Аддитивная регуляризация наивного линейного байесовского классификатора. 2016. ФУПМ МФТИ.
  67. Роза Айсина. Тематическое моделирование финансовых потоков корпоративных клиентов банка по транзакционным данным. 2017. ВМК МГУ.
  68. Артём Попов. Регуляризация тематических моделей для векторных представлений слов. 2017. ВМК МГУ.
  69. Владимир Полушин. Тематические модели для ранжирования рекомендаций текстового контента. 2017. ВМК МГУ.
  70. Владислав Батаев. Тематическая сегментация разговоров контактного центра. 2017. ФИВТ МФТИ.
  71. Карен Манукян. Интеллектуальная диалоговая система для автоматизации деятельности контакт-центра. 2017. ФИВТ МФТИ.
  72. Александр Софиенко. Классификация положительных и неразмеченных текстовых документов. 2017. ФИВТ МФТИ.
  73. Дмитрий Федоряка. Технология интерактивной визуализации тематических моделей. 2017. ФУПМ МФТИ.
  74. Ольга Цветкова. Анализ банковских транзакционных данных для выявления паттернов экономического поведения клиентов. 2017. ФУПМ МФТИ.
  75. Виталий Малыгин. Формирование репрезентативных обучающих выборок. 2017. ФУПМ МФТИ.
  76. Дарья Соболева. Языковое моделирование в задаче построения вопрос-ответной системы. 2018. ВМК МГУ.
  77. Николай Кругликов. Тематическое моделирование текстовых коллекций в диалоговых системах. 2018. ВМК МГУ.
  78. Анастасия Фадеева. Темпоральное моделирование новостных потоков. 2018. ФКН НИУ ВШЭ.
  79. Мария Селезнёва. Построение и оценка качества гетерогенных иерархических тематических моделей. 2018. ФУПМ МФТИ.
  80. Василий Алексеев. Внутритекстовая когерентность как мера интерпретируемости тематических моделей текстовых коллекций. 2018. ФУПМ МФТИ.
  81. Антон Захаренков. Итеративный подбор коэффициентов регуляризации тематических моделей. 2018. ФУПМ МФТИ.
  82. Даниил Фельдман. Использование фактов для поиска мнений в новостях. 2018. ФУПМ МФТИ.
  83. Филипп Никитин. Применение мультимодальных тематических моделей к анализу транзакционных данных. 2018. ФУПМ МФТИ.
  84. Анастасия Павловская. Тематическое моделирование в задаче классификации отзывов покупателей о работе и ассортименте продуктового магазина. 2018. ФУПМ МФТИ.
  85. Николай Скачков. Тематико-стилистические векторные представления текстовых пользовательских запросов. 2019. ВМК МГУ.
  86. Михаил Солоткий. Вероятностные тематические модели на основе данных о со-встречаемости слов. 2019. ВМК МГУ.
  87. Галина Фоминская. Проблема несбалансированности тем в вероятностных тематических моделях. 2019. ВМК МГУ.
  88. Николай Шаталов. Методы обучения без учителя для автоматического выделения составных терминов в текстовых коллекциях. 2019. ВМК МГУ.
  89. Вадим Захаренко. Методы обнаружения новых тем в вероятностных тематических моделях. 2019. ВМК МГУ.
  90. Анастасия Кряжова. Методы оценивания семантической близости фраз для классификации текстовых сообщений. 2019. НИУ ВШЭ.
  91. Анна Рогозина. Проверка гипотезы условной независимости для оценивания качества тематической кластеризации. 2019. ФПМИ МФТИ.
  92. Евгений Козлинский. Сегментация транзакционных данных розничных клиентов банка. 2019. ФПМИ МФТИ.
  93. Вадим Кислинский. Построение мультимодальной рекомендательной системы. 2019. ФПМИ МФТИ.
  94. Павел Плюснин. Итерационные методы балансировки тем в тематическом моделировании. 2019. ФПМИ МФТИ.
  95. Максим Еремеев. Ранжирование текстовых документов на основе оценок когнитивной сложности текстов. 2020. ВМК МГУ.
  96. Алексей Гришанов. Построение рекомендательной системы, основанной на обучении с подкреплением. 2020. ФПМИ МФТИ.
  97. Вадим Новоселов. Темпоральные тематические модели новостных потоков с возможностью обнаружения новых тем и событий. 2021. ВМК МГУ.
  98. Виктор Панкратов. Вероятностное тематическое моделирование несбалансированных текстовых коллекций. 2021. ФПМИ МФТИ.
  99. Анна Балакова. Выявление поляризации мнений в новостных текстах методами обучения без учителя. 2022. ВМК МГУ.
  100. Василий Висков. Методы обучения без учителя для выделения поляризаций в новостных потоках. 2022. ВМК МГУ.
  101. Евгений Косарев. Нейросетевые модели языка для выявления речевых манипуляций в новостных потоках. 2022. ВМК МГУ.
  102. Сергей Воробьёв. Модели выявления манипуляций и их мишеней в новостных сообщениях. 2023. ВМК МГУ.
  103. Мария Дзюба. Нейросетевые модели языка для ранжирования фраз в полуавтоматической суммаризации научных статей. 2023. ВМК МГУ.
  104. Ярослав Морозов. Выделение трендов в коллекциях научных статей. 2023. ВМК МГУ.
  105. Георгий Жаров. Поиск связи фрагментов манипуляций с именованными сущностями в текстах. 2023. ФПМИ МФТИ.
  106. Иван Лукьяненко. Выявление манипуляций в новостях. 2023. ФПМИ МФТИ.

Магистерские диссертации

  1. Юрий Карпов. Имитационная модель торгов. 2003. МФТИ.
  2. Дмитрий Иванцов. Применение алгоритмов бустинга для построения комбинированных инвестиционных стратегий. 2005. МФТИ.
  3. Денис Кочедыков. Разработка, реализация и тестирование специализированной библиотеки логических алгоритмов классификации. 2005. ВМК МГУ.
  4. Александр Кругов. Поиск закономерностей и принятие решений по дискретным временным рядам. 2006. МФТИ.
  5. Дмитрий Житлухин. Персонализированная рубрикация текстовых сообщений. 2007. МФТИ.
  6. Андрей Ивахненко. Методы улучшения обобщающей способности логических алгоритмов классификации. 2007. МФТИ.
  7. Василий Лексин. Технология персонализации на основе выявления тематических профилей пользователей и ресурсов Интернет. 2007. МФТИ.
  8. Фёдор Ульянов. Оценивание обобщающей способности функций близости при оптимизации модели АВО. 2007. МФТИ.
  9. Сергей Ументаев. Проблема переобучения при отборе признаков в линейной регрессии с фиксированными коэффициентами. 2007. МФТИ.
  10. Иван Гуз. Проблема обобщающей способности и оптимизация профиля монотонности в композициях классификаторов. 2008. МФТИ.
  11. Александр Маценов. Профиль разделимости и обобщающая способность линейных композиций классификаторов. 2008. МФТИ.
  12. Геннадий Федонин. Композиции алгоритмов предсказания рейтингов в системах рекомендаций. 2008. МФТИ.
  13. Никита Пустовойтов. Поиск схожих пользователей социальных сетей методами коллаборативной фильтрации. 2009. МФТИ.
  14. Александр Орлов. Комбинаторные оценки вероятности переобучения для случая произвольной заданной матрицы ошибок. 2009. МФТИ.
  15. Артур Коваль. Построение адаптивных композиций алгоритмов прогнозирования при несимметричной функции потерь. 2009. МФТИ.
  16. Ирина Лебедева. Методы повышения обобщающей способности логических алгоритмов классификации. 2010. МФТИ.
  17. Александр Фрей. Точные оценки вероятности переобучения для рандомизированного метода минимизации эмпирического риска. 2010. МФТИ.
  18. Кирилл Чувилин. Проект интеллектуальной системы для автоматизации коррекции документов в формате LaTeX. 2010. МФТИ.
  19. Пётр Цюрмасто. Точные комбинаторные оценки вероятности переобучения для цепочек алгоритмов. 2010. МФТИ.
  20. Анастасия Зухба. Вычислительная сложность задачи отбора опорных объектов в методе ближайших соседей. 2011. МФТИ.
  21. Павел Минаев. Методика тестирования алгоритмов классификации в системе Полигон и её обоснования. 2011. МФТИ.
  22. Алексей Романенко. Методы агрегирования адаптивных алгоритмов прогнозирования. 2011. МФТИ.
  23. Игорь Литвинов. Методы уточнения карты дорог по данным GPS-сигналов автомобилей. 2012. МФТИ.
  24. Никита Спирин. Структурированный поиск с числовыми и логическими ограничениями в неструктурированных Веб-коллекциях. 2012. МФТИ.
  25. Никита Животовский. Концентрация меры в комбинаторных оценках обобщающей способности. 2013. МФТИ.
  26. Виталий Глушаченков. Устойчивость матричных разложений в задачах тематического моделирования. 2013. МФТИ.
  27. Александр Мафусалов. Оценивание вероятности успеха в серии испытаний Бернулли по другой серии при наличии зависимости между вероятностями успеха. 2013. МФТИ.
  28. Николай Савинов. Классификация эмоциональной окраски сообщений в социальных сетях. 2013. МФТИ.
  29. Андрей Романов. Методы упрощения композиций, получаемых при градиентном бустинге. 2013. МФТИ.
  30. Александр Романенко. Применение условных случайных полей в задачах обработки текстов на естественном языке. 2014. МФТИ.
  31. Илья Ямщиков. Математические методы диагностики ишемической болезни по электрокардиограмме сверхвысокого разрешения. 2014. МФТИ.
  32. Влада Целых. Статистические обоснования информационного анализа электрокардиосигналов для диагностики заболеваний внутренних органов. 2015. МФТИ.
  33. Светлана Цыганова. Применение тематической модели классификации в информационном анализе электрокардиосигналов. 2015. МФТИ.
  34. Василий Бунаков. Методы нечеткого кодирования в информационном анализе электрокардиосигналов. 2015. МФТИ.
  35. Сергей Стенин. Мультиграммные аддитивно регуляризованные тематические модели. 2015. МФТИ
  36. Дмитрий Аникушин. Использование вероятностных тематических моделей для персонализации показов рекламы. 2015. ФИВТ МФТИ.
  37. Дмитрий Гронский. Аддитивная регуляризация тематических моделей для задачи классификации символьных последовательностей. 2015. ФИВТ МФТИ.
  38. Кирилл Остапенко. Выявление случаев мошенничества в онлайн-играх методами машинного обучения. 2015. ФИВТ МФТИ.
  39. Виктор Булатов. Использование графовой структуры в тематическом моделировании. 2016. ФИВТ МФТИ.
  40. Илья Ирхин. Сходимость численных методов вероятностного тематического моделирования. 2016. ФИВТ МФТИ.
  41. Анжелика Сухарева. Оценивание качества выделения терминов в задаче классификации текстовых документов. 2016. ФУПМ МФТИ.
  42. Евгения Вдовина. Отбор признаков для многоклассовой классификации символьных последовательностей. 2016. ФУПМ МФТИ.
  43. Мурат Апишев. Параллельная реализация аддитивно регуляризованного тематического моделирования и её применение для поиска этно-релевантного контента в социальных медиа. 2017. ВМК МГУ.
  44. Юлия Лукашкина. Оценивание устойчивости и полноты тематических моделей мультидисциплинарных текстовых коллекций. 2017. ВМК МГУ.
  45. Андрей Шапулин. Классификация тем в вероятностных тематических моделях коллекций текстовых документов. 2017. ВМК МГУ.
  46. Илья Голубев. Аддитивная регуляризация тематических моделей для выделения полных наборов тем в коллекциях текстовых документов. 2017. ФКН НИУ ВШЭ.
  47. Роман Дербаносов. Проблемы устойчивости и единственности стохастического матричного разложения. 2017. ФКН НИУ ВШЭ.
  48. Илья Удалов. Библиотека с открытым исходным кодом для оптимизации и регуляризации линейных предсказательных моделей по большим выборкам данных. 2017. ФКН НИУ ВШЭ.
  49. Ирина Ефимова. Иерархическая мультимодальная тематическая модель коллекции научно-популярных текстов. 2017. ФУПМ МФТИ.
  50. Андрей Игнатов. Улучшение качества цифровых снимков с помощью глубоких свёрточных нейронных сетей. 2017. ФУПМ МФТИ.
  51. Макар Краснопёров. Выделение именованных сущностей на основе текстов высокой похожести. 2017. ФИВТ МФТИ.
  52. Александр Кузьмин. Адаптивный выбор траектории регуляризации. 2017. ФИВТ МФТИ.
  53. Руслан Камалов. Нейросетевой подход к построению тематических моделей. 2018. ВМК МГУ.
  54. Николай Попов. Гиперграфовые тематические модели транзакционных данных. 2018. ВМК МГУ.
  55. Таснима Садекова. Выделение мнений в тематических моделях новостных потоков. 2018. ВМК МГУ.
  56. Никита Шаповалов. Интерпретируемые тематические модели новостных потоков для прогнозирования на финансовых рынках. 2018. ВМК МГУ.
  57. Анастасия Янина. Тематический разведочный информационный поиск. 2018. ФИВТ МФТИ.
  58. Илья Жариков. Многомодальные тематические модели на гиперграфах. 2018. ФУПМ МФТИ.
  59. Евгений Смирнов. Тематическая сегментация диалогов контактного центра. 2018. ФУПМ МФТИ.
  60. Роман Кулага. Классификация потока финансовых новостей с целью выявления динамики цен биржевых инструментов. 2018. ФУПМ МФТИ.
  61. Артём Попов. Выделение множества тематик в неразмеченной коллекции диалогов. 2019. ВМК МГУ.
  62. Вера Шишкина. Тематическое моделирование финансовых потоков корпоративных клиентов банка по транзакционным данным. 2019. ФУПМ МФТИ.
  63. Дарина Дементьева. Агрегация и персонализация новостного текстового контента. 2019. ФУПМ МФТИ.
  64. Пётр Остроухов. Предобученные по Википедии тематические векторные представления слов. 2019. ФУПМ МФТИ.
  65. Александр Никитин. Иерархические тематические векторные представления слов в коллекциях текстов. 2019. НИУ ВШЭ.
  66. Виктория Ходырева. Автоматическое именование тем в вероятностном тематическом моделировании. 2019. ФКН НИУ ВШЭ.
  67. Василий Алексеев. Поиск полного набора тем с помощью обучения нескольких тематических моделей. 2020. ФУПМ МФТИ.
  68. Полина Потапова. Тематическое моделирование образовательных целей пользователей в системе дистанционного образования. 2020. ФУПМ МФТИ.
  69. Даниил Фельдман. Комбинирование фактов, семантических ролей и тональных слов в генеративной модели для поиска мнений. 2020. ФУПМ МФТИ.
  70. Андрей Власов. Методы полуавтоматической суммаризации подборок научных статей. 2020. ФУПМ МФТИ.
  71. Анастасия Павловская. Решение проблемы холодного старта при построении индивидуальной образовательной траектории с помощью тематического моделирования. 2020. ФИВТ МФТИ.
  72. Олег Сомов. Проектирование и разработка вопросно-ответной системы на основе графов знаний. 2020. ФИВТ МФТИ.
  73. Кирилл Хрыльченко. Обобщенные модальности в вероятностных тематических моделях для транзакционных данных. 2020. ВМК МГУ.
  74. Никита Юдин. Вариационный вывод в нейронных стохастических дифференциальных уравнениях. 2020. ВМК МГУ.
  75. Николай Герасименко. Тематический поиск в коллекции юридических документов. 2020. МАИ.
  76. Дарья Соболева. Замена живой речи на синтетическое аудио для предсказания знаков пунктуации на устройстве пользователя. 2021. ВМК МГУ.
  77. Николай Скачков. Совместное обучение прямой и обратной модели машинного перевода. 2021. ВМК МГУ.
  78. Вадим Кислинский. Многокритериальная оптимизация в задаче персональных рекомендаций. 2021. ФПМИ МФТИ.
  79. Евгений Козлинский. Методы тематической классификации коротких текстовых объявлений. 2021. ФПМИ МФТИ.
  80. Анна Рогозина. Обучение моделей распространения рисков по графам. 2021. ФПМИ МФТИ.
  81. Светлана Крыжановская. Технология полуавтоматической суммаризации тематических подборок научных статей. 2022. ВМК МГУ.
  82. Евгения Милюта. Языковые модели для обнаружения поляризации общественного мнения в новостном потоке. 2022. ВМК МГУ.
  83. Виктор Панкратов. Вероятностное тематическое моделирование неcбалансированных текстовых коллекций. 2023. ФПМИ МФТИ.
  84. Арсений Веселов. Оценивание когнитивной сложности текста при помощи квантильного подхода и агрегирования. 2023. ВМК МГУ.

Дипломные работы

  1. Максим Янпольский. Идентификация инвестиционных стратегий участников биржевых торгов. 2002. ВМК МГУ.
  2. Александр Киселев. Классификация участников биржевого рынка по близости к стратегиям технического анализа. 2003. ВМК МГУ.
  3. Андрей Липасти. Метрические алгоритмы анализа биржевых стратегий и поведения участников торгов. 2003. ВМК МГУ.
  4. Денис Старых. Алгоритмы генерации сигналов в потоке торговых данных. 2003. ВМК МГУ.
  5. Денис Якубенков. Применение методов распознавания при построении и настройке имитационной модели биржевых торгов. 2003. ВМК МГУ.
  6. Екатерина Егорова. Сравнительный анализ методов алгебраической коррекции для одного класса алгоритмов прогнозирования. 2005. ВМК МГУ.
  7. Даниил Каневский. Генетические алгоритмы синтеза локальных базисов в алгебраическом подходе к проблеме распознавания. 2005. ВМК МГУ.
  8. Алексей Колосков. Применение комбинаторных оценок обобщающей способности для повышения качества метрических алгоритмов классификации. 2005. ВМК МГУ.
  9. Дмитрий Соколов. Сравнительный анализ обобщающей способности логических алгоритмов классификации. 2005. ВМК МГУ.
  10. Людмила Романюха. Логические алгоритмы классификации в задачах кредитного скоринга и оценка риска кредитного портфеля банка. 2006. ВМК МГУ.
  11. Ирек Ахуньянов. Применение модифицированного метода опорных векторов для построения метрических классификаторов. 2008. ВМК МГУ.
  12. Андрей Венжега. Отбор информативных признаков на выборках небольшой длины в задаче линейной регрессии с фиксированными ко-эффициентами. 2009. ВМК МГУ.
  13. Максим Иванов. Эффективные метрические алгоритмы классификации на основе оптимизации профиля компактности. 2009. ВМК МГУ.
  14. Алексей Медведев. Обобщающая способность логических закономерностей. 2009. ВМК МГУ.
  15. Варвара Цурко. Логические алгоритмы классификации: проблема переобучения и применение в задачах медицинской диагностики. 2009. ВМК МГУ.
  16. Григорий Чижик. Распознавание скрытых профилей пользователей и ресурсов в анализе клиентских сред. 2009. ВМК МГУ.
  17. Алексей Гуков. Оценки вероятности переобучения для некоторых связных семейств алгоритмов. 2010. ВМК МГУ.
  18. Алина Карпинская. Методы построения неполносвязных нейронных сетей и их приложения в задачах прогнозирования. 2010. ВМК МГУ.
  19. Василий Ломакин. Поиск взаимосвязей во временных рядах продаж. 2010. ВМК МГУ.
  20. Илья Решетняк. Комбинаторные оценки вероятности переобучения, учитывающие эффекты расслоения и связности в семействах алгоритмов. 2010. ВМК МГУ.
  21. Илья Толстихин. Оценки обобщающей способности и применение логических алгоритмов классификации в задаче распознавания вторичной структуры белка. 2010. ВМК МГУ.
  22. Александр Ерошенко. Применение оценок обобщающей способности в алгоритмах построения решающих деревьев. 2011. ВМК МГУ.
  23. Мария Когадеева. Математическая модель данных микрочипов ДНК и методы оценки её параметров. 2011. ВМК МГУ.
  24. Жанна Кожахметова. Построение карты дорог по данным о треках автотранспортных средств. 2011. ВМК МГУ.
  25. Юрий Логачёв. Методы ранжирования в задаче текстовой релевантности. 2011. ВМК МГУ.
  26. Елена Полежаева. Инкрементные матричные разложения в задачах коллаборативной фильтрации. 2011. ВМК МГУ.
  27. Алёна Шевцова. Отбор информативных признаков в задачах медицинской диагностики. 2011. ВМК МГУ.
  28. Александр Колесников. Прогнозирование вероятности кликов на новые рекламные объявления. 2012. ВМК МГУ.
  29. Дмитрий Солодкин. Выявление закономерностей научного цитирования на основе вероятностных тематических моделей. 2012. ВМК МГУ.
  30. Марина Дударенко. Методы предсказания информативности логических закономерностей. 2012. ВМК МГУ.
  31. Ольга Исупова. Выявление тематических связей между документами методами латентного семантического анализа. 2012. ВМК МГУ.
  32. Шаура Ишкина. Вероятность переобучения прямых цепей алгоритмов классификации. 2013. Мехмат МГУ.
  33. Мария Василевская. Алгоритмы построения разреженных тематических моделей. 2013. Мехмат МГУ.
  34. Кирилл Гаврилюк. Методы построения иерархических тематических моделей коллекции текстовых документов. 2013. ВМК МГУ.
  35. Валентин Полежаев. Обучаемые методы извлечения наукометрической информации из коллекций научных публикаций. 2013. ВМК МГУ.
  36. Евгений Соколов. Комбинаторные оценки обобщающей способности и их применение для построения композиций линейных классификаторов. 2013. ВМК МГУ.
  37. Иван Шанин. Методы анализа электрокардиограмм для ранней диагностики ишемической болезни. 2013. ВМК МГУ.
  38. Анна Потапенко. Лингвистическая регуляризация вероятностных тематических моделей. 2014. ВМК МГУ.
  39. Андрей Шадриков. Алгоритмы неотрицательных матричных разложений для тематического моделирования. 2015. ВМК МГУ.
  40. Тимур Исмагилов. Частично обучаемые вероятностные тематические модели коллекций научных текстов. 2016. ВМК МГУ.

Кандидатские диссертации

  1. Андрей Ивахненко. Комбинаторные оценки вероятности переобучения и их применение в логических алгоритмах классификации. МФТИ. 2010.
  2. Иван Гуз. Комбинаторные оценки полного скользящего контроля и методы обучения монотонных классификаторов. ВЦ РАН. 2011.
  3. Денис Кочедыков. Оценки обобщающей способности на основе характеристик расслоения и связности семейств функций. ВЦ РАН. 2011.
  4. Павел Ботов. Оценки вероятности переобучения многомерных семейств алгоритмов классификации. ВЦ РАН. 2011.
  5. Василий Лексин. Вероятностные модели в анализе клиентских сред. ВЦ РАН. 2011.
  6. Павел Кудинов. Адаптивные методы извлечения информации из статистических таблиц, представленных в текстовом виде. ВЦ РАН. 2012.
  7. Кирилл Чувилин. Автоматический синтез правил коррекции текстовых документов формата LaTeX. ВЦ РАН. 2013.
  8. Александр Фрей. Теоретико-групповой подход в комбинаторной теории переобучения. ВЦ РАН. 2013.
  9. Илья Толстихин. Неравенства концентрации вероятностной меры в трансдуктивном обучении и PAC-Байесовском анализе. ВЦ РАН. 2014.
  10. Евгений Рябенко. Выбор функций потерь в задачах неотрицательного матричного разложения. ВЦ РАН. 2014.
  11. Никита Животовский. Минимаксные оценки риска в задачах статистического обучения. МФТИ, ИППИ РАН. 2018.
  12. Анастасия Зухба. Оценка вычислительной сложности задач отбора эталонных объектов и признаков. МФТИ. 2018.
  13. Илья Трофимов. Разработка и обоснование методов параллельного покоординатного спуска для обучения обобщённых линейных моделей с регуляризацией. ФИЦ ИУ РАН. 2019.
  14. Анна Потапенко. Семантические векторные представления текста на основе вероятностного тематического моделирования. ФИЦ ИУ РАН. 2019.
  15. Мурат Апишев. Эффективная реализация алгоритмов тематического моделирования с аддитивной регуляризацией. ФИЦ ИУ РАН. 2020.
  16. Илья Ирхин. Единственность матричного разложения и сходимость регуляризованных алгоритмов в вероятностном тематическом моделировании. ФИЦ ИУ РАН. 2020.
  17. Виктор Булатов. Методы оценивания качества и многокритериальной оптимизации тематических моделей в библиотеке TopicNet. МФТИ. 2020.
  18. Анастасия Янина. Тематические и нейросетевые модели языка для разведочного информационного поиска. МФТИ. 2022.

Cсылки

Мои подстраницы

Vokov/CVVokov/Publications
Vokov/Иллюзия простоты выбораVokov/Интервью для InTalent.proVokov/Интервью для Кота Шрёдингера 2017-10-04
Vokov/Интервью для Новой газеты 2019-02-25Vokov/Интервью для ПостНауки 2017-09-27Vokov/Интервью для РИА Новости 2020-05-25
Vokov/НаучпопVokov/Некоторые задачи интеллектуального анализа данных (лекция)
Vokov/ПесочницаVokov/Планы по развитию MachineLearning.RUVokov/Публикации
Личные инструменты