Адаптивный линейный элемент
Материал из MachineLearning.
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Адаптивный линейный элемент(Адаптивный линейный нейрон или ADALINE[1]) - частный случай линейного классификатора или искусственной нейронной сети с одним слоем. Был предложен Видроу[1] и Хоффом[1] в 1960 году, развивая математическую модель нейрона МакКаллока–Питтса.
Содержание |
Общая схема работы ADALINE
Схема работы ADALINE несколько напоминает работу биологического нейрона:

На вход подаётся вектор импульсов xn ,состоящий из n числовых признаков. Внутри нейрона импульсы складываются с некоторыми весами wj, j = 1..n и, если суммарный импульс S(x) = превысит порог активации w0, то нейрон возбуждается и выдаёт некоторое значение a(x) = S(x) - w0.
Если добавить фиктивный импульс-признак x0 ≡ -1 и ему сопоставить вес w0 - порог активации, то формулу выхода Y(x) можно выписать более компактно:
a(x) =(w,x) , где (w,x) - скалярное произведение, w и x - векторы весов и импульсов-признаков соответственно.
Обучение ADALINE
Пусть дана обучающая выборка: множество входных значений X и множество выходящих значений Y, такие что каждому входу xj соответствует yj - выход, j = 1..m. Необходимо по этим данным построить ADALINE, которая допускает наименьшее количество ошибок на этой обучающей выборке.
Обучение ADALINE заключается в подборе "наилучших" значений вектора весов w. Какие значение весов лучше определяет
функционал потерь.В ADALINE используется функционал, предложенный Видроу и Хоффом, L(a,x) = (a - y)2. Таким образом необходимо минимизировать функционал Q(w):
Применим метод градиентного спуска, тогда следующее значение будет иметь вид:
,где
- темп обучения.
Схема обучение ADALINE
Вход:
- обучающая выборка из m элементов
- темп обучения
- параметр сглаживания функционала
Выход:
- Вектор весов
Тело:
- Инициализировать веса
;
- Инициализировать начальную оценку функционала:
-
;
-
- Повторять:
- Выбрать объект
из
(например, случайным образом);
- Вычислить ошибку:
;
- Сделать шаг градиентного спуска:
;
- Оценить значение функционала:
;
- Выбрать объект
- Пока значение
не стабилизируется и/или веса
не перестанут изменяться.
Связь обучения ADALINE с Stochastic Gradient
Схема обучения ADALINE соответствует схеме обучения линейного классификатора методом стохастического градиента c линейной функцией активации φ(z) = z и квадратичной функцией потерь L(a,x) = (a - y)2.