Математические методы анализа текстов (курс лекций) / осень 2019

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

В курсе рассматриваются основные задачи и математические методы обработки естественного языка.

Курс читается:

От студентов требуются знание курса машинного обучения, основ глубинного обучения, а также языка программирования Python.

Контакты

  • На ВМК занятия проходят в аудитории 72 по вторникам, начало в 10:30
  • В ФИЦ ИУ РАН занятия по средам, начало в 16:10
  • По всем конструктивным вопросам пишите в telegram-чат
  • Репозиторий со всеми материалами: ссылка
  • Короткая ссылка на страницу курса: ссылка

Правила сдачи курса

  • В рамках курса предполагается четыре практических задания и экзамен.
  • Практические задания сдаются в систему anytask (инвайт у преподавателя). Срок выполнения каждого задания — 2 недели. За каждое задание можно получить до 10-ти баллов. За каждый день просрочки назначается штраф 1 балл. Основной язык выполнения заданий — Python 3.
  • Все практические задания выполняются самостоятельно. Любые работы, содержащие плагиат, оцениваются в 0 баллов.
  • Правила сдачи экзамена появятся позднее.
  • Правила выставления итоговой оценки появятся позднее.

Программа курса

Тема Материалы Д/З
1 Введение в область анализа текстов (Natural Language Processing). Обзор основных задач. слайды
2 Предобработка данных. Простейшие модели классификации. слайды
3 Векторные представления слов. слайды практическое задание 1
4 Задача теггинга последовательности. Графические модели для теггинга.
5 Задача теггинга последовательности. Нейросетевые и комбинированные модели для теггинга.
6 Языковое моделирование. Генерация текста на естественном языке.
7 Модель sequence-to-sequence в машинном переводе и других приложениях.
8 Глубокие архитектуры представления предложений и документов.
9 Синтаксический разбор и его применение в практических задачах.
10 Задача классификации текстов.
11 Тематическое моделирование.
12 Сегментация и суммаризация текстов.
13 To be announced
14 To be announced

Страницы прошлых лет

2018 (ФУПМ МФТИ), 2018 (ВМК МГУ)

2017 (ВМК МГУ)

Дополнительные материалы

Литература

Другие курсы по NLP