EM-алгоритм с последовательным добавлением компонент (пример)
Материал из MachineLearning.
|
EM-алгоритм с последовательным добавлением компонент — общий метод[1] нахождения функции плотности распределения объектов [1] . Предполагается, что она имеет вид смеси распределений[1]. В данной статье рассматривается гауссовское распредение выборки, количество гауссианов произвольно[1].
Постановка задачи
Задана выборка , в которой = - множество объектов, = - множество ответов. Предполагается, что на множестве объектов задана плотность распределения , представленная в виде смеси гауссиан с параметрами и ,
Задача разделения смеси заключается в том, чтобы, имея выборку случайных и независимых наблюдений из смеси оценить вектор параметров доставляющий максимум функции правдоподобия
Алгоритм отыскания оптимальных параметров
Оптимальные параметры отыскиваются последовательно с помощью EM-алгоритма. Идея заключается во введении вспомогательного вектора скрытых переменных , обладающего двумя замечательными свойствами. С одной стороны, он может быть вычислен, если известны значения вектора параметров , с другой стороны, поиск максимума правдоподобия сильно упрощается, если известны значения скрытых переменных. EM-алгоритм состоит из итерационного повторения двух шагов. На E-шаге вычисляется ожидаемое значение (expectation) вектора скрытых переменных по текущему приближению вектора параметров . На М-шаге решается задача максимизации правдоподобия (maximization) и находится следующее приближение вектора по текущим значениям векторов и .
Если число компонент смеси заранее неизвестно, то применяется EM-алгоритм с последовательным добавлением компонент. Если при каком-либо число неправильно классифицированных объектов превышает допустимое, то увеличивается и повторяется EM(). [1]
- Вход:
Выборка ; - максимальный допустимый разброс правдоподобия объектов; - минимальная длина выборки, по которой можно восстановить плотность; - параметр критерия останова;
- Выход:
- число компонент смеси;
- Алгоритм
1. начальное приближение - одна компонента:
2. для всех
3. выделить объекты с низким правдоподобием
4. Если то выход из цикла по
5. Начальное приближение для компоненты:
6.
Вычислительный эксперимент
Алгоритм тестируется на модельных и реальных данных.
Пример 1
Рассмотрим пример на модельных данных. Выборка состоит из четырех классов. Первый класс представляет собой две гауссианы с диагональной и недиагональной матрицами ковариации, остальные - одна гауссиана. [1]
[X1, Y1] = gengaussdata(150, [0;0], [1/4,1/2]); [X2, Y2] = gengaussdata(150, [4;0], [1 5/6;5/6 1]); [X4, Y4] = gengaussdata(120, [2;4], [1/10;1/10]); [X3, Y3] = gengaussdata(200, [-2,2], [1/3, 1/3]); [X5, Y5] = gengaussdata(200, [2,2], [1.25, 1/20]); X=[X1;X2;X3;X4;X5]; %Y are answers (numbers of classes) Y=[Y1;Y2;Y3+1;Y4+2;Y5+3]; hold off drawdata(X,Y,'*'); %learning algorithm [W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,40,0.001]) %testing and geting answers from algorithm [Yanswer] = emtest(X, M, Sigma, Ytheta); drawdata(X,Yanswer,'o'); %printing centers of classes according to algorithm decision printcenters(M);
Истинное распределение классов показано на рисунке слева. Одинаковым цветом помечены элементы одного класса. Как можно заметить, некоторые представители "красных", "бирюзовых" и "синих" перемешались.
Качество обучения алгоритма проверяется на той же выборке. На правом рисунке кружками показаны полученные ответы, цвет отвечает за принадлежность к соответствующему классу. Центры классов, отмечены черным кружками. Алгоритм нашел восемь гауссовских распределений вместо четырех, причем одна из красных компонент описывается сразу 4 гауссианами, в то время как остальные компоненты выборки - одной. Этот факт говорит о том, что одна гауссиана плохо приближает данное распределение, и, для уменьшения числа ошибок, следует приблизить её большим числом гауссиан. Алгоритм допустил 16 ошибок, что на выборке из 820 элементов составляет менее 2%.
Пример 2
В качестве второго примера возьмем два плохо разделимых класса.
Благодаря тому, что алгоритм выделил четыре гауссианы в синем классе, некоторые его элементы, далеко забравшиеся в чужой класс, были классифицированы правильно. [1]
Ирисы Фишера
Проверку алгоритма проведем на классической задаче: Ирисы Фишера Объектами являются три типа ирисов: setosa, versicolor, virginica
У каждого объекта есть четыре признака: длина лепестка, ширина лепестка, длина чашелистика, ширина чашелистика. Для удобства визуализации результатов будем использовать первые два признака.
load 'iris2.data' X = iris2(:,[3,4]); Y = [ones([50,1]);2*ones([50,1]);3*ones([50,1])]; hold off drawdata(X,Y,'*'); title('Irises classification') xlabel('petal width, cm'); ylabel('petal length, cm'); legend('Iris Setosa','Iris Versicolour','Iris Virginica','Location','NorthWest'); [W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,20,0.0005]) [Yanswer] = emtest(X, M, Sigma, Ytheta); drawdata(X,Yanswer,'o')
Алгоритм хорошо отделил ирисы setosa от остальных, но допустил достаточное[1]число ошибок при разделении ирисов versicolor и virginica. Это произошло потому, что алгоритм изначально решал задачу кластеризации и лишь потом задачу классификации, приписывая каждому кластеру номер наиболее хорошо приближаемого им класса. Для разделения [1] последних двух классов можно использовать линейные алгоритмы классификации, либо решать с помощью EM-алгоритма, используя все четыре признака.
Исходный код
Скачать листинги алгоритмов можно здесь EMk.m, emlearn.m, emtest.m
Смотри также
Литература
- [1]
- К. В. Воронцов, Лекции по статистическим (байесовским) алгоритмам классификации
- Bishop C. - Pattern Recognition and Machine Learning (Springer, 2006)
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |