Вычисление второй производной по одной переменной
Материал из MachineLearning.
Введение
Постановка математической задачи
Допустим, что в некоторой точке  у функции 
 существует производная 2-го порядка 
, которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
Изложение метода
При численном дифференцировании функцию  аппроксимируют легко вычисляемой функцией 
  и приближенно полагают 
. При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона. Вводя обозначение 
, запишем это многочлен и продифференцируем его почленно:
Общая формула примет следующий вид:
Обрывая ряд на некотором числе членов, получим приближенное выражение для соответсвующей производной. Наиболее простые выражения получим, оставляя в формуле (1) только первый член:
,
- \frac{1}{2}
,
 
- \frac{1}{2}
 
- \frac{1}{k!}
 
- \frac{1}{k!}
 

