Вычисление второй производной по одной переменной
Материал из MachineLearning.
Содержание[убрать] |
Введение
Постановка математической задачи
Допустим, что в некоторой точке у функции
существует производная 2-го порядка
, которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
Изложение метода
При численном дифференцировании функцию аппроксимируют легко вычисляемой функцией
и приближенно полагают
. При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона. Вводя обозначение
, запишем это многочлен и продифференцируем его почленно:
Общая формула примет следующий вид:
Числовой пример
Рекомендации программисту
Заключение
Список литературы
- А.А.Самарский, А.В.Гулин. Численные методы. Москва «Наука», 1989.
- Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. Численные методы. Лаборатория Базовых Знаний, 2003.
http://win-web.ru/uchebniki/open/bahvalov_chisl_meth.html
- Н.Н.Калиткин. Численные методы. Москва «Наука», 1978.