Математические методы прогнозирования (кафедра ВМиК МГУ)/Старый дизайн

Материал из MachineLearning.

Версия от 21:43, 19 сентября 2011; Kropotov (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Заведующий кафедрой — лауреат Ленинской премии, академик РАН, д.ф.-м.н., профессор Юрий Иванович Журавлёв

Содержание

Кафедра была создана в 1997 году. Кафедра готовит специалистов по анализу данных, распознаванию и прогнозированию в технике, экономике, социологии, биологии и т. п. с использованием современных математических методов, программных и компьютерных систем. В процессе обучения студенты получают фундаментальное образование в таких областях математики, как современная алгебра, математическая логика, дискретная и комбинаторная математика, математическое моделирование, диагностика сложных систем, интеллектуальный анализ данных, машинное обучение, прогнозирование, прикладная статистика, математические модели искусственного интеллекта, распознавание образов, обработка и анализ изображений. В рамках специального практикума студенты получают навыки работы с современными базами данных и знаний, овладевают современными языками и методами программирования, приобретают опыт решения прикладных задач. Кафедра готовит научных работников, преподавателей колледжей и высшей школы, специалистов по разработке и применению математических методов для решения таких задач, как, например, прогнозирование месторождений полезных ископаемых, землетрясений, свойств химических соединений, техногенных и социальных катастроф и кризисов, развития экономических и политических ситуаций, и т. п.

В 2001 году был создан филиал кафедры на базе Института математических проблем биологии РАН в г. Пущино, в котором студенты старших курсов участвуют в решении фундаментальных и прикладных проблем в области биоинформатики.

Производственную практику студенты проходят в научно-исследовательских институтах РАН, участвуя, в том числе, в работах по грантам РФФИ, и компаниях, специализирующихся в анализе данных и машинном обучении (например, в компании Форексис). Многие студенты, имеющие склонность к научной деятельности, получают первые самостоятельные результаты уже к четвертому-пятому году обучения, публикуются в научных журналах и после получения диплома продолжают обучение в аспирантуре кафедры.

Координаты для связи:

Телефон: +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь кафедры: Д.П. Ветров

Доска объявлений

Новости

{{#if: | |



Все новости

Объявления о курсах

{{#if: 1 | |


В спецкурсе будут изложены общие принципы, лежащие в основе дискретных методов анализа информации в задачах распознавания, классификации и прогнозирования. Будут рассмотрены подходы к конструированию процедур классификации по прецедентам на основе использования аппарата логических функций и методов построения покрытий булевых и целочисленных матриц. Будут изучены основные модели логических процедур классификации и рассмотрены вопросы, связанные с исследованием сложности их реализации и качества решения прикладных задач.

Спецкурс для бакалавров 2-4 курсов. По спецкурсу издано учебное пособие. Презентации лекций выставлены на сайте кафедры ММП. Записаться на спецкурс и задать вопрос можно, послав письмо на адрес: edjukova@mail.ru или p_prok@mail.ru.

Все объявления

Расписание

Актуальное расписание занятий на осенний семестр 2011/2012 уч.г.

Кафедральные курсы

Третий курс

Четвёртый курс

  • Математические основы теории прогнозирования, Ю.И. Журавлев, Д.П. Ветров
    Обзорный курс для студентов 3-го потока ВМК МГУ по основным математическим методам решения задач машинного обучения. Задачей курса также является ознакомление с основными математическими теориями, которые используются при построении алгоритмов распознавания, такими как алгебра, математическая статистика, методы оптимизации, дискретная математика и др.

Пятый курс

  • Прикладной статистический анализ данных, К.В.Воронцов
    Обзорный курс, охватывающий дисперсионный, корреляционный, регрессионный анализ, анализ временных рядов и прогнозирование, анализ выживаемости, анализ панельных данных, выборочный анализ. Цели курса — связать математическую статистику с практическими приложениями в различных предметных областях, научить студентов правильно применять методы прикладной статистики.

Спецкурсы

  • Байесовские методы машинного обучения, Д.П. Ветров, Д.А. Кропотов, проходит по средам в ауд. 510, начало в 16-20.
    В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
  • Структурные методы анализа изображений и сигналов, Д.П. Ветров, Д.А. Кропотов, читается в весеннем семестре.
    В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
  • Теория надёжности обучения по прецедентам, К.В. Воронцов.
    Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
  • Исчисления высказываний классической логики, С.И. Гуров, проходит по вторникам в ауд. 607, начало в 16-20, первое занятие состоится 4 октября.
    В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
  • Извлечение информации из изображений, И.Б. Гуревич.
    В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
  • Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус, А.Н. Панкратов, Р.К. Тетуев, проходит один раз в две недели по понедельникам в ауд. 507, начало в 14-35.
    Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
  • Логический анализ данных в распознавании, Е.В. Дюкова.
    Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
  • Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
    Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
  • Вычислительные задачи математической биологии, С.А. Махортых, А.Н. Панкратов, проходит по понедельникам один раз в две недели по понедельникам в ауд. 507, начало в 14-35.
    В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
  • Нестатистические методы анализа данных и классификации, В.В. Рязанов, проходит по вторникам в ауд. 510, начало в 18-00.
    В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
  • Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
    Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
  • Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
    Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.

Спецсеминары

Преподаватели

Материалы

Рекомендации

Файлы

  • mmp-fish-kurs — образцы оформления курсовых работ в MS Word и LaTeX. — Обновлено 14 апреля 2011 г.
  • Программа вступительного экзамена в аспирантуру по философии.
  • Программа вступительного экзамена в аспирантуру по математике (основная часть + дополнение для специальности 01.01.09).

Ссылки

Подстраницы

Математические методы прогнозирования (кафедра ВМиК МГУ)/Дипломные работыМатематические методы прогнозирования (кафедра ВМиК МГУ)/Доска объявленийМатематические методы прогнозирования (кафедра ВМиК МГУ)/Кафедральные курсы
Математические методы прогнозирования (кафедра ВМиК МГУ)/МатериалыМатематические методы прогнозирования (кафедра ВМиК МГУ)/Новый дизайнМатематические методы прогнозирования (кафедра ВМиК МГУ)/О кафедре
Математические методы прогнозирования (кафедра ВМиК МГУ)/Персональный составМатематические методы прогнозирования (кафедра ВМиК МГУ)/ПросеминарМатематические методы прогнозирования (кафедра ВМиК МГУ)/Расписание
Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминарыМатематические методы прогнозирования (кафедра ВМиК МГУ)/Старый дизайнМатематические методы прогнозирования (кафедра ВМиК МГУ)/Учебный план
Личные инструменты