Проклятие размерности
Материал из MachineLearning.
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Проклятие размерности— проблема, связанная с увеличением количества данных в связи с ростом размерности пространства. Термин "проклятие размерности" был введен Ричардом Беллманом в 1961 году.
Содержание[убрать] |
Проблемы
Проблема "проклятия размерности" часто возникает в машинном обучении, например, при применении метода ближайших соседей.
С ростом размерности пространства увеличивается количество параметров, описывающих систему (например, координаты).
Это влечет за собой следующие трудности:
- Трудоемкость вычислений
- Необходимость хранения огромного количества данных
- Увеличение доли шумов
Пример
Рассмотрим единичный интервал [0,1]. 100 равномерно разбросанных точек будет достаточно, чтобы покрыть этот интервал с частотой не менее 0,01.
Теперь рассмотрим 10-мерный куб. Для достижения той же степени покрытия потребуется уже точек. То есть, по сравнению с одномерным пространством, требуется в
раз больше точек.
"Проклятие размерности" особенно проявляется при работе со сложными системами, которые описываются большим числом параметров.
Способы борьбы с "проклятием размерности"
Основная идея при решении проблемы — понизить размерность пространства, а именно спроецировать данные на подпространство меньшей размерности.
На этой идее, например, основан метод главных компонент.
Литература
- Bellman, R.E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ.
- Bellman, R.E. 1961. Adaptive Control Processes. Princeton University Press, Princeton, NJ.