Пробные задачи
Материал из MachineLearning.
- Короткая ссылка bit.ly/1B4NKjZ
- Решения задач, работы студентов, пример.
Содержание |
Задача 1
Классифицировать кредита с помощью логистической регрессии. Для оптимизации параметров использовать алгоритм Ньютона-Рафсона или алгоритм градиентного спуска. Построить ROC-кривые для фиксированного числа разбиений. Построить ряд графиков для различных мощностей подвыборок разбиений. Число итераций ограничить либо условием на сходимость – норма разности последовательных векторов весов не больше точности, либо числом шагов.
Задача 2
Нарисовать траекторию пошагового спуска к минимуму градиентного метода и имитации отжига. Сравнить их работу при поиске мимимума тестовой функции.
Задача 3
Восстановить регрессию используя формулу Надарая-Ватсона. Нарисовать восстановленную функцию с различными ядрами и шириной окна. В качестве данных использовать выборку цены на хлеб или цены на электроэнергию.
Задача 4
Предсказать сорт винограда из которого сделано вино, используя https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data "wines" результаты химических анализов], c помощью KNN - метода k ближайших соседей с тремя различными метриками. Построить график зависимости величины ошибки от числа соседей k.
Задача 5
Нарисовать траекторию пошагового спуска к минимуму [|градиентного метода] и имитации отжига. Сравнить их работу при поиске мимимума [SCHWEFEL.pdf|тестовой функции].
Задача 6
Нарисовать путь наименьшей стоимости между временными рядами, найденный с помощью алгоритма DTW. Ввести ограничения на вид пути в матрице с помощью техники "Sakoe-Chiba band". Показать, что при наименьшей величине отклонения пути от диагонали при этих ограничениях стоимость DTW перейдет в евклидово расстояние. Исследовать зависимость стоимости пути от величины ограничения или же построить "анимацию" этого пути.
Задача 7
По описанию условий посева предсказать прорастут семена растений или нет. Провести бинарную классификацию семян с помощью метода Парзеновского окна. Построить график зависимости ошибки на контроле от ширины окна. Подобрать оптимальную ширину окна.
Задача 8
Классификация ядовитости грибов по основным признакам. Построить модель классификации на основе сети радиальных базисных функций. В качестве функции ошибки использовать метрику HEOM.
Задача 9
Заполнение пропусков в данных приложения Сardiomood. Сравнить различные методы заполнения пропусков [1]:
1) Метод замены пропущенного значения средним из ближайших присутствующих элементов переменной.
2) Метод восстановления пропущенного значения сплайн-интерполяцией по присутствующим элементам.
3) Метод восстановления пропущенного значения на основе использования Zet-алгоритма [1] .
Сравнение делать оценивая близость восстановленных "пропусков" с реальными данными.
Задача 10
2D визуализация N-мерных данных с помощью PCA. Курс "Machine Learning" на Coursera: 7_pca.m script and 2.5 part of exercise 7 [1]. Визуализировать результаты на плоскости, оценить ошибку.
Решение каждой задачи должно быть визуализировано, все рисунки необходимо кратко описать.
- С помощью логистической регрессии разделить два класса точек на плоскости. Результаты изобразить на графиках (см. пример Classification using logistic regression). Рассмотреть случаи линейно разделимой и неразделимой выборок.
- Изобразить на рисунке Парето-расслоение множества точек на плоскости. (Парето-расслоение - набор последовательно вычисляемых Парето оптимальных фронтов. Первый фронт вычисляется для полной выборки и удаляется из нее. Для оставшихся данных вычисляется следующий слой и т.д)
- Дана выборка "Вина различных регионов". Требуется определить кластеры (регионы происхождения вин) и нарисовать результат: цветной точкой обозначен объект кластера; цветным кружком обозначен класс этого объекта, взятый из выборки. Вариант задания: определить число кластеров. Вариант задания: использовать два алгоритма, например -means и EM, и показать сравнение результатов кластеризации на графике.
- Сгладить временной ряд Цены (объемы) на основные биржевые инструменты методом экспоненциального сглаживания. Нарисовать цветные графики сглаженных с различным рядов и исходного ряда.
- Аппроксимация выборки замкнутой кривой [2]: проверить, лежат ли точки на окружности? Сгенерировать данные самостоятельно. Построить графики для случая когда точки лежат на окружности и нет, на графиках изобразить выборку и аппроксимирующую окружность.
- Дан временной ряд с пропусками, например [3]. Предложить способы заполнения пропусков в данных, заполнить пропуски. Для каждого способа построить гистограмму. Вариант: взять выборку без пропусков, удалить случайным образом часть данных, заполнить пропуски, сравнить гистограмму восстановленной выборки с гистограммой исходной выборки.
- Дана выборка "Вина различных регионов". Выбрать два признака. Рассмотреть различные функции расстояния при классификации с помощью метода ближайшего соседа. Для каждой изобразить результат классификации в пространстве выбранных признаков.
- Для различных видов зависимости (линейная, квадратичная, логарифмическая) построить линейную регрессию и нарисовать на графике SSE-отклонения (среднеквадратичные отклонения). Данные сгенерировать самостоятельно или взять данные "Цена на хлеб".
- Оценить площадь единичного круга методом Монте-Карло. Построить график зависимости результата от размера выборки.
- Дана выборка: ирисы Фишера. Реализовать процедуру классификации методом решающего дерева. Проиллюстрировать результаты классификации на плоскости в пространстве двух признаков.
- Задан временной ряд – объемы почасового потребления электроэнергии (выбрать любые два дня). Аппроксимировать ряд полиномиальными моделями различных степеней (1-7). *Предложить метод определения оптимальной степени полинома.
- Задано два одномерных временных ряда различной длины. Вычислить расстояние между рядами методом динамического выравнивания. На графике изобразить путь наименьшей стоимости.
- Сгенерировать набор точек на плоскости. Выделить и визуализировать главные компоненты.
- Аппроксимировать выборку цены на хлеб полиномиальной моделью. Нарисовать график. Выделить объекты, являющиеся выбросами, используя правило трех сигм, и отметить их на графике.
- Разделить выборку ирисы Фишера на кластеры. Проиллюстрировать на графиках результаты кластеризации для различного числа кластеров, выделить кластеры разными цветами.
- Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки). Предложить способ визуализации решения (например, с помощью ковариационной матрицы).
- Сгенерировать выборку случайным образом и воссстановить ее плотность методом парзеновского окна. Взять несколько окон разной длины и изобразить результаты на одном рисунке. Рассмотреть различные способы порождения данных.
- Дан набор трехэлементных векторов. Первые два элемента нарисовать по осям абсцисс и ординат. Третий элемент отобразить как круг с пропорциональным радиусом. Пропорции подобрать исходя из чувства прекрасного. Сравнить полученный график с plot3. Что лучше?
- Построить методом наименьших модулей уравнение регрессии 2ой степени по результатом опытов, данные прилагаются (x1,x2,x3 - переменные факторы, N - отклик). Вариант: сравнить с методом наименьших квадратов, построив на одном рисунке 2 графика (по оси абсцисс - истинные отклики, по оси ординат - результаты моделирования с помощью МНМ и МНК)
- Разобраться как работает regexp в Матлабе. Сделать код, который выделяет все, что находится внутри скобок некоторого арифметического выражения. Визуализировать работу regexp.
- Дан временной ряд из m + 1 (случайных) точек. Приблизить m его первых точек полиномами степени от 1 до m. Вычислить среднюю ошибку в точках. Какая степень дает наибольшую ошибку?
- Аппроксимировать выборку цены на хлеб полиномиальными моделями различного порядка. Построить на одном рисунке два графика: качество аппроксимации на обучении и на контроле в зависимости от степени полинома.
- Предложить способы визуализации наборов четырехмерных векторов, например для Fisher's iris data.
- Дан временной ряд, описывающий потребление электричества. Приблизить ряд несколькими криволинейными моделями и нарисовать спрогнозированные и исходный ряды на одном графике.
- Дана выборка, в которой есть несколько выбросов. Известно, что она может быть описана одномерной линейной регрессией. Требуется переборным путем найти выбросы. Показать их на графике.
- Дана выборка из двух классов на плоскости. Требуется разделить ее линейно и найти все объекты, которые залезли в чужой класс. Показать их на графике.
- Решается задача заполнения пропусков в социологических анкетах наиболее адекватными значениями. Основная идея: для фиксированной анкеты найти заполнить ее пропущенные поля с использованием значений соответствующих полей ближайших соседей. Задана выборка --- матрица, в которой элемент принадлежит конечному множеству допустимых значений -го поля анкеты; отметка означает пропуск в поле. На множестве задано отношение предпочтения . Например, "начальное образование" «среднее образование» «высшее образование» --- отношение линейного порядка. Требуется ввести такую функцию расстояния или метрику , которая бы обеспечивала наиболее полное восстановление пропусков, и описать процедуру восстановления. Дополнительно: изменится ли ваше решение, в случае, когда каждая анкета имеет не менее одного пропуска. Вариант: каждое поле имеет не менее одного пропуска. Вариант: значительная часть элементов матрицы пропущена.