Сеть радиальных базисных функций
Материал из MachineLearning.
Радиальные функции — это функции , зависящие только от расстояния между x и фиксированной точ-
кой пространства X.
Гауссиан с диагональной матрицей можно записать в виде
где — нормировочный множитель,
— взвешенная евклидова метрика в n-мерном пространстве X:
,
.
Чем меньше расстояние , тем выше значение плотности в точке x. Поэтому плотность можно рассматривать как функцию близости вектора x к фиксированному центру .
Содержание |
Сеть радиальных базисных функций
Пусть , каждый класс имеет свою плотность
распределения и представлен частью выборки .
Гипотеза
Функции правдоподобия классов , представимы в виде
смесей компонент. Каждая компонента имеет n-мерную гауссовскую плотность
с параметрами
:
Алгоритм классификации
Запишем байесовское решающее правило, выразив плотность каждой компоненты через взвешенное евклидово расстояние от объекта x до центра компоненты :
где — нормировочные множители. Алгоритм имеет вид
суперпозиции, состоящей из трёх уровней или слоёв.
Первый слой образован гауссианами .
На входе они принимают описание объекта x, на выходе выдают оценки близости
объекта x к центрам , равные значениям плотностей компонент в точке x.
Второй слой состоит из M сумматоров, вычисляющих взвешенные средние этих
оценок с весами . На выходе второго слоя появляются оценки принадлежности
объекта x каждому из классов, равные значениям плотностей классов .
Третий слой образуется единственным блоком argmax, принимающим окончательное решение об отнесении объекта x к одному из классов.
Таким образом, при классификации объекта x оценивается его близость к каж-
дому из центров по метрике . Объект относится к тому
классу, к чьим центрам он располагается ближе.
Описанный трёхуровневый алгоритм классификации называется сетью c радиальными базисными функциями или RBF-сетью (radial basis function network). Это одна из разновидностей нейронных сетей.
Обучение RBF-сети
Обучение сводится к восстановлению плотности каждого из классов с помощью EM-алгоритма. Результатом обучения являются центры и дис- персии компонент . Интересно отметить, что, оценивая дисперсии, мы фактически подбираем метрики , с помощью которых будут вычисляться рас-стояния до центров . При использовании Алгоритма 1.4 для каждого класса определяется оптимальное число компонент смеси.[1]
Литература
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |