Критерии согласия

Материал из MachineLearning.

Перейти к: навигация, поиск

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса:

  1. Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
  2. Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Содержание

Общие критерии согласия

Нулевая гипотеза H_0: F_n(x) = F(x), где F_n(x) - эмпирическая функция распределения вероятностей; F(x) - гипотетическая функция распределения вероятностей.

Группы общих критериев согласия:

  • критерии, основанные на изучении разницы между теоретической плотностью распределения и эмпирической гистограммой;
  • критерии, основанные на расстоянии между теоретической и эмпирической функциями распределения вероятностей;

Критерии, основанные на сравнении теоретической плотности распределения и эмпирической гистограммы

Критерии, основанные на сравнении теоретической и эмпирической функций распределения вероятностей

Расстояние между эмпирической и теоретической функциями распределения вероятностей является весьма эффективной статистикой для проверки гипотез о виде закона распределения вероятностей случайной величины.

Критерии согласия, использующие различные варианты анализа расстояния между теоретической и эмпирической функциями распределения:

Другие критерии:

Специальные критерии согласия

Нормальное распределение

Нормальный закон распределения вероятностей получил наибольшее распространение в практических задачах обработки экспериментальных данных. Большинство прикладных методов математической статистики исходит из предположения нормальности распределения вероятностей изучаемых случайных величин. Широкое распространения этого распределения вызвало необходимость разработки специальных критериев согласия эмпирических распределений с нормальным. Существуют как модификации общих критериев согласия, так и критерии, созданные специально для проверки нормальности.

Экспоненциальное распределение

Экспоненциальный закон распределения вероятностей является базовым законом, используемым в теории надежности. Его аналитическая простота делает его привлекательным для инженеров и исследователей.

Существует большое количество специальных критериев согласия для экспоненциального распределения:

Равномерное распределение

Если x_1, \dots, x_n - выборка из распределения вероятностей с функцией F(x), то случайная величина  y_i = F(x_i) распределена равномерно на интервале [0,1]. Поэтому установление равномерности распределения является по существу критерием согласия наблюдаемых данных с любым теоретическим распределением. Этим и объясняется повышенный интерес к поиску простых в вычислительном отношении и эффективных критериев равномерности распределения.

Критерии симметрии

Если отсутствуют предпосылки для проверки согласия эмпирического распределения с каким-либо теоретическим, то выявление даже самых общих свойств эмпирического распределения дает некоторую информацию для выбора приемов и методов обработки экспериментального материала.

Одним из таких практически важных свойств распределения является его симметричность относительно центра группирования значений случайной величины. Существует много критериев, проверяющих симметрию:


Ссылки


Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
  2. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.

См. также


Данная статья является непроверенным учебным заданием.
Студент: Участник:Anton
Преподаватель: Участник:Vokov
Срок: 8 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты