Критерии согласия
Материал из MachineLearning.
Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса:
- Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
- Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.
Содержание |
Общие критерии согласия
Нулевая гипотеза , где - эмпирическая функция распределения вероятностей; - гипотетическая функция распределения вероятностей.
Группы общих критериев согласия:
- критерии, основанные на изучении разницы между теоретической плотностью распределения и эмпирической гистограммой;
- критерии, основанные на расстоянии между теоретической и эмпирической функциями распределения вероятностей;
Критерии, основанные на сравнении теоретической плотности распределения и эмпирической гистограммы
- Критерий согласия хи-квадрат [1]
- Критерий числа пустых интервалов [1]
- Квартильный критерий Барнетта-Эйсена [1]
Критерии, основанные на сравнении теоретической и эмпирической функций распределения вероятностей
Расстояние между эмпирической и теоретической функциями распределения вероятностей является весьма эффективной статистикой для проверки гипотез о виде закона распределения вероятностей случайной величины.
Критерии согласия, использующие различные варианты анализа расстояния между теоретической и эмпирической функциями распределения:
- Критерий Джини
- Критерий Крамера-фон Мизеса
- Критерий Колмогорова-Смирнова [1] [1]
- Критерий Реньи (R-критерий) [1]
- Критерий Смирнова-Крамера-фон Мизеса (Критерий омега-квадрат) [1] [1]
- Критерий Андерсона-Дарлинга [1]
- Критерий Купера [1]
- Критерий Ватсона [1]
- Критерий Фроцини [1]
Другие критерии:
Специальные критерии согласия
Нормальное распределение
Нормальный закон распределения вероятностей получил наибольшее распространение в практических задачах обработки экспериментальных данных. Большинство прикладных методов математической статистики исходит из предположения нормальности распределения вероятностей изучаемых случайных величин. Широкое распространения этого распределения вызвало необходимость разработки специальных критериев согласия эмпирических распределений с нормальным. Существуют как модификации общих критериев согласия, так и критерии, созданные специально для проверки нормальности.
Экспоненциальное распределение
Экспоненциальный закон распределения вероятностей является базовым законом, используемым в теории надежности. Его аналитическая простота делает его привлекательным для инженеров и исследователей.
Существует большое количество специальных критериев согласия для экспоненциального распределения:
- Критерий Шапиро-Уилка для экспоненциального распределения [1]
- Критерии типа Колмогорова-Смирнова для экспоненциального распределения [1] [1]
- Критерии типа Смирнова-Крамера-фон Мизеса для цензурированных данных [1]
- Критерий Фроцини для экспоненциального распределения [1]
- Корреляционный критерий экспоненциальности [1]
- Регрессионный критерий Брейна-Шапиро [1]
- Критерий Кимбера-Мичела [1]
- Критерий Фишера для экспоненциального распределения [1]
- Критерий Бартлетта-Морана [1] [1]
- Критерий Климко-Антла-Радемакера-Рокетта [1]
- Критерий Холлендера-Прошана [1] [1]
- Критерий Кочара [1]
- Критерий Эппса-Палли-Чёрго-Уэлча [1]
- Критерий Бергмана [1]
- Критерий Шермана [1]
- Критерий наибольшего интервала [1]
- Критерий Хартли [1]
- Критерий показательных меток [1]
- Ранговый критерий независимости интервалов [1] [1]
- Критерии, основанные на трансформации экспоненциального распределения в равномерное
- Критерии [1]
- Критерий Гринвуда [1]
- Критерий Манн-Фертига-Шуера для распределения Вейбулла [1]
- Критерий Дешпанде [1]
- Критерий Лоулесса [1]
Равномерное распределение
Если - выборка из распределения вероятностей с функцией , то случайная величина распределена равномерно на интервале [0,1]. Поэтому установление равномерности распределения является по существу критерием согласия наблюдаемых данных с любым теоретическим распределением. Этим и объясняется повышенный интерес к поиску простых в вычислительном отношении и эффективных критериев равномерности распределения.
- Критерий Кимбела [1]
- Критерий Морана [1]
- Критерий Шермана [1]
- Критерий Ченга-Спиринга [1]
- Критерий Саркади-Косика [1]
- Энтропийный критерий Дудевича-ван дер Мюлена [1]
- Критерий равномерности Хегахи-Грина [1]
- Критерий Янга [1]
- Критерии типа Колмогорова-Смирнова для равномерного распределения [1]
- Критерий Фроцини для равномерного распределения [1]
- Критерий Гринвуда-Кэсенберри-Миллера [1]
- "Сглаженный" критерий Неймана-Бартона [1]
Критерии симметрии
Если отсутствуют предпосылки для проверки согласия эмпирического распределения с каким-либо теоретическим, то выявление даже самых общих свойств эмпирического распределения дает некоторую информацию для выбора приемов и методов обработки экспериментального материала.
Одним из таких практически важных свойств распределения является его симметричность относительно центра группирования значений случайной величины. Существует много критериев, проверяющих симметрию:
- "Быстрый" критерий Кенуя [1]
- Критерий симметрии Смирнова [1]
- Критерий знаков [1]
- Одновыборочный критерий Уилкоксона [1]
- Критерий Антилла-Керстинга-Цуккини [1]
- Критерий Бхатачарья-Гаствирта-Райта (модифицированный критерий Уилкоксона) [1]
- Критерий Финча [1]
- Критерий Бооса [1].
- Критерий Гупты [1]
- Критерий Фрезера [1]
Ссылки
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
См. также
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Статистика (функция выборки)
- Критерии нормальности
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |