Робастное оценивание
Материал из MachineLearning.
Содержание[убрать] |
Введение
Вычисление робастных оценок
Рассмотрим пример. Для оценки неизвестных параметров
используется
наблюдений
, причем они связаны между собой следующим неравенством
, где элементы матрицы
суть известные коэффициенты, а
- вектор независимых случайных величин,имеющих (приблизительное)одинаковые функции распределения.
Тогда решение сводится к следующему:
Если матрица - матрица полного ранга
, то
,
а оценки
будут высиляться по следующей формуле
,
где
, далее
- матрица подгонки.
Допустим, что мы получили значения и остатки
.
Пусть - некоторая оценка стандартной ошибки наблюдений
(или стандартной ошибки остатков
)
Метрически винзоризуем наблюдения , заменяя их псевдонаблюдениями
:
Константа регулирует степень робастности, её значения хорошо выбирать из промежутка от 1 до 2, например, чаще всего
.
Затем по псевдонаблюдениям вычисляются новые значения
подгонки (и новые
).
Действия повторяются до достижения сходимости.
,
Литература
- Хьюбер П. Робастность в статистике. — М.: Мир, 1984.
Ссылки
- Робастность в статистике.
- Робастность статистических процедур.
- Публикации по робастным методам оценивания параметров и проверке статистических гипотез на сайте профессора НГТУ Лемешко Б.Ю..
- Robust statistics.
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |