Математические методы анализа текстов (МФТИ) / 2021
Материал из MachineLearning.
В курсе рассматриваются основные задачи и математические методы обработки естественного языка.
Курс читается:
- студентам кафедры «Математические методы прогнозирования» ВМК МГУ с 2016 года
- студентам кафедры «Интеллектуальные системы» ФУПМ МФТИ с 2018 года
От студентов требуются знание курса машинного обучения, основ глубинного обучения, а также языка программирования Python.
Содержание |
Объявления
Нет
Контакты
- Преподаватели курса: Попов А.С., Апишев М.А., Хрыльченко К.Я., Воронцов К.В.
- В этом семестре занятия будут проводиться онлайн в zoom
- По всем конструктивным вопросам пишите в telegram-чат
- Репозиторий со всеми материалами: ссылка
- Видеозаписи лекций 2020 года: ссылка
- Короткая ссылка на страницу курса: TBA
Правила сдачи курса
Правила выставления итоговой оценки
В рамках курса предполагается четыре практических задания и экзамен. Практические задания сдаются в систему anytask (инвайт у преподавателя). Срок выполнения каждого задания — 2 недели. За каждое задание можно получить до 10-ти баллов. За каждый день просрочки назначается штраф 1 балл. Основной язык выполнения заданий — Python 3.
Студенты, набравшие за практические задания больше 40 баллов, получают автоматом максимальную оценку. Для остальных итоговая оценка по 10-ти балльной шкале вычисляется по следующей формуле:
TBA
Если после сдачи экзамена студенту не хватает баллов на положительную оценку, он отправляется на "пересдачу". Студент должен досдать домашние задания, которые он не сдавал в течение семестра, чтобы набрать баллы для получения минимальной удовлетворительной оценки. Домашние задания проверяются без учёта штрафа.
Программа курса
№ | Дата | Тема | Материалы | Д/З |
---|---|---|---|---|
1 | 02.09 | Организация курса, правила игры.
Введение в обработку текстов (Natural Language Processing). Предобработка, выделение признаков и классификация . | ||
2 | 09.09 | Векторные представления слов | ||
3 | 15.09 | Задача разметки последовательностей (tagging). Примеры задач.
Модель Linear-CRF, её упрощения и обобщения. | ||
4 | 23.09 |
Модели рекуррентных нейронных сетей: RNN, LSTM. Применение LSTM для разметки последовательности. | ||
5 | 30.09 | Машинный перевод. Подход Sequence-to-sequence.
Механизм внимания в подходе sequence-to-sequence. Архитектура transformer. | ||
6 | 13.10 | Задача языкового моделирования.
Статистические и нейросетевые языковые модели. Задача генерации естественного языка. | ||
7 | 20.10 | Контекстуальные векторные представления слов.
Transfer learning в NLP. Модель BERT и её модификации. | ||
8 | 28.10 | Задача классификации текстов.
Дизайн индустриальной ML-системы. | ||
9 | 03.11 | Тематическое моделирование и его приложения. | ||
10 | 11.11 |
Диалоговые и вопросно-ответные системы. | ||
11 | 17.11 | Синтаксический разбор и его применение в практических задачах. | ||
12 | 24.11 | Информационный поиск.
NLP в рекомендательных системах. | ||
13 | 01.12 | Автоматическая суммаризация текстов. |