Участник:EvgSokolov/Песочница
Материал из MachineLearning.
Содержание |
fRMA (Frozen Robust Multi-Array Analysis)
Рассматривается следующая модель уровня экспрессии:
Здесь используются следующие обозначения:
-
— номер партии микрочипов
. Два чипа относятся к одной партии, если эксперименты с ними были проведены в одной лаборатории в одно и то же время.
-
— номер микрочипа
.
-
— номер набора проб
. Также через
мы будем обозначать номер гена, соответствующего
-му набору проб.
-
— номер пробы
.
-
— предобработанная (с вычтенным фоном и нормализованная) логарифмированная интенсивность пробы
из набора проб
микрочипа
из партии микрочипов
.
-
— экспрессия гена
на
-м микрочипе.
-
— коэффициент сродства пробы
гену
.
-
— случайная ошибка, вызывающая различия между партиями проб.
-
— случайная ошибка, вызывающая различия между пробами на чипах одной партии.
В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: .
Также делается предположение, что
— это случайная величина, дисперсия которой не зависит от партии чипов:
.
Обучение модели
Для обучения необходимы данные с большого числа микрочипов.
Сначала ко всем микрочипам применяется метод квантильной нормализации, приводящий все данные к одному распределению. В дальнейшем мы будем называть это распределение «представительным».
Непосредственная настройка модели (1) при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. Рассматривается упрощенная модель
.
По обучающей выборке находятся робастные оценки параметров и
для данной модели.
Затем вычисляются остатки
, с помощью которых оцениваются дисперсии
и
:
;
,
где .
Обработка новых чипов
Рассмотрим процесс обработки новых чипов. Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже.
В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства:
(здесь — это индекс новой партии микрочипов).
Далее из скорректированных интенсивностей нужно получить робастную оценку для .
Это делается разными способами в зависимости от того, из скольких чипов состоит партия.
Один микрочип
В данном случае индексы и
могут быть опущены опущены, так как обрабатывается один микрочип и одна партия.
Логарифмированная концентрация оценивается следующим образом:
,
где — оценка дисперсии скорректированной интенсивности
, а
— веса, соответствующие некоторой M-оценке.
Данная оценка учитывает с низкими весами выбросы (так как им соответствуют маленькие ) и пробы с большой дисперсией шума.
Партия микрочипов
В данном случае индекс может быть опущен, так как обрабатывается одна партия микрочипов.