Аппроксимация Лапласа (пример)
Материал из MachineLearning.
Аппроксимация Лапласа - способ оценки параметров нормального распределения при апроксимации заданой плотности вероятности.
Содержание[убрать] |
Постановка задачи
Задана выборка — множество значений свободных переменных и множество
соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели
:
3-1 показать зависимость среднеквадратичной ошибки от значений параметров модели: ;
3-2 построить график и сделать апроксимацию Лапласа для нее;
3-3 найти расстояния между получеными зависимостями, используя расстояние Кульбака - Лейблера.
Описание алгоритма
При востановлении регрессии рассматривалась следующая гипотеза порождения данных:
В таком случае, при фиксированной модели f плотность вероятности появления данных равняется[1]:
- это функция регрессионных невязок, т.е.
;
- нормировачный коэффициент.
3-1. В заданной модели f, используя метод наименьших квадратов, находим оптимальное значение вектора параметров . Далее, фиксируем все параметры выбранной регрессионной модели (для определенности зададим им оптимальные значения) кроме одного (пусть этот незафиксированный параметр будет w(1)). После чего, варируя значение w(1), строим искомую зависимость
и его график. Таким образом построена зависимость от одного параметра w(1). Аналогично действуя, строится зависимость от большего количества параметров.
3-2.
3-3. Расстояние Кульбака - Лейблера между двумя распределениями p(z) и q(z) равняется:
Вычислительный эксперимент
Обозначим плотность распределения SSE как , а его апроксимация лапласса
.
Пример 1
Задуманная функция . Рассматривается линейная регрессионная модель с двумя параметрами:
.
и
- оптимальное значение параметров (при которых SSE минимально).
Фиксируем один параметр и задаем различные значение
(500 случайных значений на отрезке [-1;2]). Строим зависимость:
.
Повторим эксперимент, только теперь варируем сразу оба параметра и
:
апроксимация Лапласса:
На рис.2 наблюдается зависимость между коэффициентами и
. Следовательно, ковариационная матрица
не будет диагональной.
Смотри также
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
Примечания
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |