Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
(→Дисперсионный анализ) |
(→Примеры задач) |
||
Строка 166: | Строка 166: | ||
анализа приведены в табл. 7.2 (подробно | анализа приведены в табл. 7.2 (подробно | ||
метод описан в 4.3.1). | метод описан в 4.3.1). | ||
+ | |||
+ | 1) Составить m = 5 выборок объемом n = 6+N mod 4 + | ||
+ | N mod 3 (N − номер студента по списку группы) из нормаль- | ||
+ | ных генеральных совокупностей X1,. . . , Xm с математиче- | ||
+ | скими ожиданиями μi = 9+0.1n + 0.01i(−1)i, i = 1, m, и | ||
+ | средними квадратическими отклонениями σ = 3. | ||
+ | 2) С помощью теста Кочрана при уровне значимости α = 0.05 | ||
+ | проверить гипотезу о том, что генеральные совокупности | ||
+ | X1,. . . , Xm имеют равные дисперсии, т.е. σ21 | ||
+ | =. . .= σ2 | ||
+ | m. | ||
+ | 3) С помощью теста Фишера при уровне значимости α = 0.05 | ||
+ | проверить гипотезу о том, что генеральные совокупности | ||
+ | X1,. . . , Xm имеют равные математические ожидания, т.е. | ||
+ | μ1 =. . .= μm. | ||
==Перечень методов== | ==Перечень методов== |
Версия 15:21, 12 декабря 2009
Статьи о группах методов или критериев
Некоторые рекомендации
— К.В.Воронцов 02:14, 14 ноября 2009 (MSK) |
Ссылки на источники обязательны. Если Вы упоминаете другие понятия прикладной статистики (в том числе названия статистических критериев), оформляйте их как ссылки на страницы внутри Ресурса. В конце каждой статьи не забывайте про разделы ==Литература== (для книг), ==Ссылки== (для ссылок на внешние URL), ==См. также== (для ссылок на страницы внутри Ресурса).
Двухфакторная непараметрическая модель.
новая статья
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
Назначение. В том случае, когда закон
распределения не является нормальным,
используется непараметрический
дисперсионный анализ Фридмана.
Нулевая гипотеза. Средние значения всех
выборок равны.
Предпосылки
• Все случайные величины взаимно
независимы.
• Данные каждой выборки распределены по
одному закону распределения. Обратите
внимание: закон распределения каждой
выборки может отличаться от закона
распределения других.
Описание метода
Исходные данные представляются в
следующем виде (табл. 4.17).
Таблица 4.17 Общий вид исходных данных для однофакторного дисперсионного анализа Номера элементов совокупностей Номера совокупностей 1 2 1 m 1 I2I...I i |...|n Х11 Х21 Xii Xml X12 X22 Xi2 Xm2 Xij X2, x„ Xm) Xin X2n Xjn Xmn Для этого в каждом столбце значения X заменяют их рангами (другими словами, вместо значений переменных ставится их номер в ряду, упорядоченном по возрастанию). Затем рассчитывается значение критерия: тп {п -н 1) Зт{п -¥ 1) > (4.19) где Ri, соответствующие значения рангов. Если расчетное значение х^ будет больше критического, взятого с заданным уровнем значимости и (п - 1) степенью свободы, гипотеза о различии между партиями принимается. При расчетах можно проверить правильность расстановки рангов и расчетов, зная, что имеет место соотношение: пт (т + 1) i:i:R,i = '^"^y ' (4-20) i=1j=1 ^ Примечание. При малых значениях тип критерий х^ дает слишком грубое приближение, и при этом возможно принятие неправильного решения. Поэтому критерий х^ применяется в том случае, когда выполняются следующие условия: т = 3 и п > 9 или m = 4 и п > 4 или т > 4,п>9 (см. [4]).
Литература
(для книг)
Ссылки
(для ссылок на внешние URL)
См. также
(для ссылок на страницы внутри Ресурса).
Дисперсионный анализ
общие определения, примеры задач и перечень методов (в виде списка ссылок)
|
Для дисперсионного анализа в английском языке принято сокращение ANOVA (ANalys Of VAriances, что означает «дисперсионный анализ»), которое используется и в некоторых русскоязычных источниках.
Дисперсионный анализ (от латинского Dispersio – рассеивание / Analysis Of Variance - ANOVA) применяется для исследования влияния одной или нескольких качественных переменных (факторов) на одну зависимую количественную переменную (отклик).
В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные): , а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.
Сущность дисперсионного анализа заключается в расчленении общей дисперсии изучаемого признака на отдельные компоненты, обусловленные влиянием конкретных факторов, и проверке гипотез о значимости влияния этих факторов на исследуемый признак. Сравнивая компоненты дисперсии друг с другом посредством F — критерия Фишера, можно определить, какая доля общей вариативности результативного признака обусловлена действием регулируемых факторов.
Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок: tex>x_1,...,x_n</tex>, которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых факторов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты эксперимента), двухфакторным (при изучении влияния двух факторов) и многофакторным (позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).
Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным. (Суходольский Г.В., 1972; Шеффе Г., 1980).
Дисперсионный анализ используют, если зависимая переменная измеряется в шкале отношений, интервалов или порядка, а влияющие переменные имеют нечисловую природу (шкала наименований).
Цель дисперсионного анализа
Основной целью дисперсионного анализа (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).
Модель дисперсионного анализа
Примеры задач
В задачах, которые решаются дисперсионным анализом, присутствует отклик числовой природы, на который воздействует несколько переменных, имеюш;их номинальную природу. Например, несколько видов рационов откорма скота или два способа их содержания и т.п.
Например, в течение недели в трех разных местах работало несколько аптечных киосков. В дальнейшем мы можем оставить только один. Необходимо определить, существует ли статистически значимое отличие между объемами реализации препаратов в киосках. Если да, мы выберем киоск с наибольшим среднесуточным объемом реализации. Если же разница объема реализации окажется статистически незначимой, то основанием для выбора киоска должны быть другие показатели. Исходные данные для анализа приведены в табл. 7.2 (подробно метод описан в 4.3.1).
1) Составить m = 5 выборок объемом n = 6+N mod 4 + N mod 3 (N − номер студента по списку группы) из нормаль- ных генеральных совокупностей X1,. . . , Xm с математиче- скими ожиданиями μi = 9+0.1n + 0.01i(−1)i, i = 1, m, и средними квадратическими отклонениями σ = 3. 2) С помощью теста Кочрана при уровне значимости α = 0.05 проверить гипотезу о том, что генеральные совокупности X1,. . . , Xm имеют равные дисперсии, т.е. σ21 =. . .= σ2 m. 3) С помощью теста Фишера при уровне значимости α = 0.05 проверить гипотезу о том, что генеральные совокупности X1,. . . , Xm имеют равные математические ожидания, т.е. μ1 =. . .= μm.
Перечень методов
Разбиение суммы квадратов Многофакторный дисперсионный анализ Эффекты взаимодействия Также смотрите разделы. Сложные планы Ковариационный анализ (ANCOVA) Многомерные планы: многомерный дисперсионный и ковариационный анализ Анализ контрастов и апостериорные критерии Предположения и эффекты их нарушения
См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанная модель ANOVA/ANCOVA, а также Планироване эксперимента.
Дисперсионный анализ (ANOVA) [Лапач, 193, Кулаичев, 170]. Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж. Однофакторная параметрическая модель: метод Шефе. Однофакторная непараметрическая модель: критерии Краскела-Уоллиса, Джонкхиера. Общий случай модели с постоянными факторами, теорема Кокрена. Двухфакторная непараметрическая модель: критерии Фридмана [Лапач, 203], Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов. Двухфакторный нормальный анализ. Задача ковариационного анализа.
Дисперсионный анализ (ANOVA)
[Лапач, 193, Кулаичев, 170].
- Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж.
- Однофакторная параметрическая модель: метод Шеффе.
- Однофакторная непараметрическая модель: критерий Краскела-Уоллиса, критерий Джонкхиера.
- Общий случай модели с постоянными факторами, теорема Кокрена.
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
- Двухфакторный нормальный анализ.
- Ковариационный анализ (постановка задачи).
История
Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. Первоначально дисперсионный анализ был разработан для обработки данных, полученных в ходе специально поставленных экспериментов, и считался единственным методом, корректно исследующим причинные связи. Метод применялся для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.
Литература
(для книг)
- Шеффе Г. Дисперсионный анализ. — М., 1980.
Ссылки
(для ссылок на внешние URL)
Ссылки
- Дисперсионный анализ — Электронный учебник StatSoft.
- Дисперсионный анализ - Аналитическая статистика.
- Student's t-test (Wikipedia).
- t-критерий Стьюдента (Википедия).
- Распределение Стьюдента (Википедия).
- Квантили распределения Стьюдента (Википедия).
См. также
(для ссылок на страницы внутри Ресурса).
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Статистика (функция выборки)