Анализ поведения по сигналам носимых устройств

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(дополнение)
(Данные, ссылки на коллекции)
Строка 4: Строка 4:
== Данные, ссылки на коллекции ==
== Данные, ссылки на коллекции ==
 +
Основные проблемы анализа поведения и классификации движений
 +
 +
Построение суперпозиций движений
 +
 +
Построение ансамблей моделей для порождения простых выборок (Сергей Иванычев – диплом)
 +
 +
Построение моделей локальной аппроксимации
 +
Разметка времени жизни, стандартизация моделей локальной аппроксимации
 +
https://doi.org/10.1109/TNNLS.2016.2531089
 +
https://doi.org/10.1007/s10444-016-9483-y
 +
https://doi.org/10.1007/s00521-015-2039-0
 +
https://doi.org/10.1016/j.neucom.2018.02.074
 +
https://academic.oup.com/biostatistics/advance-article/doi/10.1093/biostatistics/kxx070/4788724
 +
https://doi.org/10.1016/j.ins.2018.02.041
 +
https://doi.org/10.1016/j.asoc.2017.11.037
 +
https://doi.org/10.1016/j.asoc.2018.01.002
 +
 +
Обучение по частичной разметке и локальная аппроксимация
 +
(Оценка необходимого числа измерений, необходимого объема выборки)
 +
https://doi.org/10.1002/bimj.201700021
 +
 +
Сегментация временного ряда
 +
(Технологическая - прогнозирование времени отключения акселерометра)
 +
https://doi.org/10.1007/s11063-017-9592-8
 +
https://web.stanford.edu/~hallac/GGS.pdf
 +
http://eprints.lse.ac.uk/64863/8/Fryzlewicz_Multiple%20change-point%20detection_2017_published%20LSERO.pdf
 +
https://doi.org/10.1177/0278364917713116
 +
 +
Оптимизация параметров моделей на оси времени, замена DTW на градиентный алгоритм применение при построении моделей SEMOR
 +
 +
Иерархическая классификация, три характеристических времени (эл дв, движение, действие, жизнь/работа) - алгебраический и байесовский подход
 +
https://doi.org/10.1145/3056540.3076194
 +
https://doi.org/10.1016/j.procs.2016.05.345
 +
 +
Идентификация пользователя - по ряду определить ID независимо от класса
 +
https://doi.org/10.1109/35021BIGCOMP.2015.7072841
 +
https://dl.acm.org/citation.cfm?id=2997017
 +
https://doi.org/10.1016/j.ins.2017.11.045
 +
 +
Определения изменения в поведении (настроение, состояние здоровья)
 +
http://www.mdpi.com/1424-8220/18/4/1126/htm
 +
http://www.mdpi.com/1424-8220/18/2/623/htm
 +
https://doi.org/10.1007/s11042-015-3188-y
 +
Определение ЧСС, частоты дыхания, других показателей, потребляемые суточные калории
 +
https://doi.org/10.1016/j.ins.2017.11.045
 +
 +
Классификация движений человека
 +
Обзор литературы по проекту “Весёлый строитель”
 +
 +
Работы команды Стрижова по акселерометрам
 +
 +
Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016. [URL]
 +
 +
Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. [URL]
 +
 +
Исаченко Р.В., Стрижов В.В. Метрическое обучение в задачах многоклассовой классификации временных рядов // Информатика и ее применения, 2016, 10(2) : 48-57. [URL]
 +
 +
Задаянчук А.И., Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. [URL]
 +
 +
Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2015, PP(99). [URL]
 +
 +
Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. [URL]
 +
И прочие работы по этой теме тут www.ccas.ru/strijov
== Библиографические коллекции ==
== Библиографические коллекции ==
[[:Категория:Статьи]]
[[:Категория:Статьи]]

Версия 19:03, 15 апреля 2018

Короткий адрес: http://bit.ly/2r3y70F

Проекты

Данные, ссылки на коллекции

Основные проблемы анализа поведения и классификации движений

Построение суперпозиций движений

Построение ансамблей моделей для порождения простых выборок (Сергей Иванычев – диплом)

Построение моделей локальной аппроксимации Разметка времени жизни, стандартизация моделей локальной аппроксимации https://doi.org/10.1109/TNNLS.2016.2531089 https://doi.org/10.1007/s10444-016-9483-y https://doi.org/10.1007/s00521-015-2039-0 https://doi.org/10.1016/j.neucom.2018.02.074 https://academic.oup.com/biostatistics/advance-article/doi/10.1093/biostatistics/kxx070/4788724 https://doi.org/10.1016/j.ins.2018.02.041 https://doi.org/10.1016/j.asoc.2017.11.037 https://doi.org/10.1016/j.asoc.2018.01.002

Обучение по частичной разметке и локальная аппроксимация (Оценка необходимого числа измерений, необходимого объема выборки) https://doi.org/10.1002/bimj.201700021

Сегментация временного ряда (Технологическая - прогнозирование времени отключения акселерометра) https://doi.org/10.1007/s11063-017-9592-8 https://web.stanford.edu/~hallac/GGS.pdf http://eprints.lse.ac.uk/64863/8/Fryzlewicz_Multiple%20change-point%20detection_2017_published%20LSERO.pdf https://doi.org/10.1177/0278364917713116

Оптимизация параметров моделей на оси времени, замена DTW на градиентный алгоритм применение при построении моделей SEMOR

Иерархическая классификация, три характеристических времени (эл дв, движение, действие, жизнь/работа) - алгебраический и байесовский подход https://doi.org/10.1145/3056540.3076194 https://doi.org/10.1016/j.procs.2016.05.345

Идентификация пользователя - по ряду определить ID независимо от класса https://doi.org/10.1109/35021BIGCOMP.2015.7072841 https://dl.acm.org/citation.cfm?id=2997017 https://doi.org/10.1016/j.ins.2017.11.045

Определения изменения в поведении (настроение, состояние здоровья) http://www.mdpi.com/1424-8220/18/4/1126/htm http://www.mdpi.com/1424-8220/18/2/623/htm https://doi.org/10.1007/s11042-015-3188-y Определение ЧСС, частоты дыхания, других показателей, потребляемые суточные калории https://doi.org/10.1016/j.ins.2017.11.045

Классификация движений человека Обзор литературы по проекту “Весёлый строитель”

Работы команды Стрижова по акселерометрам

Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016. [URL]

Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. [URL]

Исаченко Р.В., Стрижов В.В. Метрическое обучение в задачах многоклассовой классификации временных рядов // Информатика и ее применения, 2016, 10(2) : 48-57. [URL]

Задаянчук А.И., Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. [URL]

Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2015, PP(99). [URL]

Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. [URL] И прочие работы по этой теме тут www.ccas.ru/strijov

Библиографические коллекции

Категория:Статьи

Личные инструменты