Биномиальное распределение

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 11: Строка 11:
[[Моменты случайной величины|Моменты]]:
[[Моменты случайной величины|Моменты]]:
-
Математическое ожидание: <tex>MX=np</tex>
+
*Математическое ожидание: <tex>MX=np</tex>
-
 
+
*Дисперсия: <tex>DX=np(1-p)</tex>
-
Дисперсия: <tex>DX=np(1-p)</tex>
+
*[[Асимметрия]]: <tex>\gamma_1=\frac{1-2p}{\sqrt{np(1-p)}}</tex>; при <tex>p=0.5</tex> распределение симметрично относительно центра <tex>n/2</tex>
-
 
+
-
[[Асимметрия]]: <tex>\gamma_1=\frac{1-2p}{\sqrt{np(1-p)}}</tex>; при <tex>p=0.5</tex> распределение симметрично относительно центра <tex>n/2</tex>
+
==Асимптотические приближения при больших n==
==Асимптотические приближения при больших n==

Версия 08:09, 2 ноября 2009

Содержание

Определение

Биномиальное распределение - дискретное распределение вероятностей случайной величины X, принимающей целочисленные значения k=0,1,\ldots,n с вероятностями:

P(X=k)=C_n^kp^k(1-p)^{n-k}.

Данное распределение характеризуется двумя параметрами: целым числом n>0, называемым числом испытаний, и вещественным числом p, 0\le p\le 1, называемом вероятностью успеха в одном испытании. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из n независимых испытаний, в каждом из которых может произойти "успех" с вероятностью p, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы X=X_1+\cdots+X_n независимых слагаемых, имеющих распределение Бернулли.

Основные свойства

Характеристическая функция \phi(t)=(1+p(e^{it}-1))^n

Моменты:

  • Математическое ожидание: MX=np
  • Дисперсия: DX=np(1-p)
  • Асимметрия: \gamma_1=\frac{1-2p}{\sqrt{np(1-p)}}; при p=0.5 распределение симметрично относительно центра n/2

Асимптотические приближения при больших n

Ссылки

Личные инструменты