Вычисление второй производной по одной переменной
Материал из MachineLearning.
| Строка 13: | Строка 13: | ||
Общая формула примет следующий вид:  | Общая формула примет следующий вид:  | ||
| + | {{ eqno | 1 }}  | ||
::<tex> \varphi^{(k)}(x)=k!\left[ y(x_0,x_1,\dots,x_k) + \left( \sum_{i=0}^k \xi_i \right) y(x_0,x_1,\dots,x_{k+1}) + \left( \sum_{i>j\geq 0}^{i=k+1}\xi_i\xi_j\right)y(x_0,x_1,\dots,x_{k+2})   + \left( \sum_{i>j>l\geq 0}^{i=k+2}\xi_i\xi_j\xi_l\right)y(x_0,x_1,\dots,x_{k+3}) +\dots\right] </tex>  | ::<tex> \varphi^{(k)}(x)=k!\left[ y(x_0,x_1,\dots,x_k) + \left( \sum_{i=0}^k \xi_i \right) y(x_0,x_1,\dots,x_{k+1}) + \left( \sum_{i>j\geq 0}^{i=k+1}\xi_i\xi_j\right)y(x_0,x_1,\dots,x_{k+2})   + \left( \sum_{i>j>l\geq 0}^{i=k+2}\xi_i\xi_j\xi_l\right)y(x_0,x_1,\dots,x_{k+3}) +\dots\right] </tex>  | ||
| + | Обрывая ряд на некотором числе членов, получим приближенное выражение для соответсвующей производной. Наиболее простые выражения получим, оставляя в формуле {{eqref|1}} только первый член:  | ||
| + | |||
| + | ::<tex>y'(x)\approx y(x_0,x_1) = \frac{y(x_0)-y(x_1)}{x_0-x_1}</tex>,  | ||
| + | |||
| + | {{ eqno | 1 }}  | ||
| + | ::\frac{1}{2}<tex>y''(x)\approx y(x_0,x_1,x_2) = \frac{1}{x_0-x_2}\left( \frac{y_0-y_1}{x_0-x_1}- \frac{y_1-y_2}{x_1-x_2}\right)</tex>,  | ||
| + | |||
| + | ::\frac{1}{k!}<tex>y^{(k)}(x) \approx y(x_0,x_1,\dots,x_k) = \sum_{p=0}^{k}y_p \prod_{i=0, i\neq p}^k {(x_p-x_i)}^{-1}  | ||
== Числовой пример ==  | == Числовой пример ==  | ||
== Рекомендации программисту ==  | == Рекомендации программисту ==  | ||
Версия 17:53, 15 октября 2008
Введение
Постановка математической задачи
Допустим, что в некоторой точке  у функции 
 существует производная 2-го порядка 
, которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
Изложение метода
При численном дифференцировании функцию  аппроксимируют легко вычисляемой функцией 
  и приближенно полагают 
. При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона. Вводя обозначение 
, запишем это многочлен и продифференцируем его почленно:
Общая формула примет следующий вид:
Обрывая ряд на некотором числе членов, получим приближенное выражение для соответсвующей производной. Наиболее простые выражения получим, оставляя в формуле (1) только первый член:
,
- \frac{1}{2}
,
 
- \frac{1}{2}
 
- \frac{1}{k!}
 
- \frac{1}{k!}
 

