Статистический анализ данных (курс лекций, К.В.Воронцов)/2014

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Оценки)
м (Оценки)
Строка 8: Строка 8:
|| Антипов Алексей || || || || || || || || ||
|| Антипов Алексей || || || || || || || || ||
|-
|-
-
|| Арбузова Дарья || || || || || || || || ||
+
|| Арбузова Дарья || 1 || || || || || || || ||
|-
|-
|| Горелов Алексей || || || || || || || || ||
|| Горелов Алексей || || || || || || || || ||
Строка 34: Строка 34:
|| Подоприхин Дмитрий || || || || || || || || ||
|| Подоприхин Дмитрий || || || || || || || || ||
|-
|-
-
|| Рыжков Александр || || || || || || || || ||
+
|| Рыжков Александр || 1 || || || || || || || ||
|-
|-
|| Сокурский Юрий || || || || || || || || ||
|| Сокурский Юрий || || || || || || || || ||

Версия 15:08, 28 сентября 2014

Содержание

Оценки

Студент №1 (1) №2 (1) №3 (2) Рецензирование №3 (1) №4 (2) Рецензирование №4 (1) Дополнительно (2) Сумма за семестр (10) Оценка
Алешин Илья
Антипов Алексей
Арбузова Дарья 1
Горелов Алексей
Зиннурова Эльвира
Исмагилов Тимур
Калиновский Илья
Корольков Михаил
Ломов Никита
Львов Сергей
Найдин Олег
Никифоров Андрей
Новиков Александр
Петров Григорий
Подоприхин Дмитрий
Рыжков Александр 1
Сокурский Юрий
Ульянов Дмитрий
Харациди Олег
Шабашев Федор
Шадриков Андрей
  • Задание считается сданным на момент получения проверяющим письма с отчётом (и кодом, если это указано в задании), при условии отсутствия необходимости внесения дополнений и исправлений.
  • Штраф за просрочку сдачи заданий начисляется из расчета 0.1 балла за сутки.
  • Для допуска к экзамену необходимо сдать как минимум два задания: хотя бы одно из первых двух и хотя бы одно из последних двух.
  • Балл за рецензирование можно получить только при условии сдачи соответствующего задания.
  • Дополнительные два балла можно получить, предъявив сертификат по курсу Data Analysis and Statistical Inference: https://www.coursera.org/course/statistics.
  • Итоговая оценка по курсу рассчитывается по формуле \min\left(\left(0.99+Homework\right)/2, Exam\right), где Homework — сумма баллов, заработанных в течение семестра, Exam — оценка на устном экзамене. Округление делается по стандартным правилам.

Задание 1. Исследование свойств одномерных статистических критериев на модельных данных

Необходимо провести исследование одного или нескольких классических критериев проверки статистических гипотез. Интерес представляет поведение достигаемого уровня значимости (p-value) как функции размера выборок и параметров распределения. В соответствии с индивидуальными параметрами задания необходимо указанным способом сгенерировать одну или несколько выборок из заданного распределения, выполнить проверку гипотезы при помощи соответствующего критерия, а затем многократно повторить эту процедуру для различных значений параметров. По результатам расчётов необходимо построить требуемые в задании графики, среди которых могут быть следующие:

  1. график зависимости достигаемого уровня значимости от значений параметров при однократном проведении эксперимента;
  2. график зависимости достигаемого уровня значимости одного или двух критериев от значений параметров, усреднённого по большому количеству повторений эксперимента (например, по 1000 повторений);
  3. график с эмпирическими оценками мощности одного или двух критериев для разных значений параметров.

В качестве оценки мощности принимается доля отвержений нулевой гипотезы среди всех проверок. То есть, если эксперимент повторялся k раз для каждого набора значений параметров, и в m из k случаев гипотеза была отвергнута на некотором фиксированном уровне значимости \alpha (примем \alpha=0.05), оценкой мощности будет отношение m/k.

Необходимо сдать: отчёт с описанием алгоритма, построенными графиками и выводами (объяснение полученных результатов моделирования, границы применимости критерия и т. д.), а также код на R, Матлабе или Питоне, при запуске которого на экран выводятся графики, соответствующие имеющимся в отчёте.

Постановки задач.

Пример решения: чувствительность двухвыборочного критерия Стьюдента.

Задание принимается до 23:59 28.09.

Задания 2-4. Работа с реальными данными

Требуется подобрать и применить наилучший статистический метод, позволяющий ответить на вопрос прикладной задачи; обосновать выбор метода, его применимость и оптимальность. Помимо выводов, касающихся математических особенностей решения, необходимо в терминах предметной области сформулировать выводы, которые могли бы быть понятны гипотетическому заказчику-нематематику.

Необходимо сдать: подробный отчёт по проведённому исследованию, содержащий визуализацию исходных данных, описания и выводы каждого этапа анализа — используемые методы, обоснование их применимости, графики.

По заданиям 3 и 4 отчёт каждого студента рецензируется назначенным одногруппником. Задачей рецензента является проверка корректности выбора метода решения, полноты его применения и понятности изложения. Рецензент получает балл, если:

  • его собственная работа засчитана;
  • либо в рецензируемой работе устранены все недостатки и она принимается с первого раза, либо указан полный список недостатков работы, устранить которые не удалось.

Задание 2. Проверка гипотез

Постановки задач.


Задание 3. Регрессия

Постановки задач.


Задание 4. Прогнозирование

Постановки задач.


Ссылки