Критерий Диболда-Мариано

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 7: Строка 7:
Пусть
Пусть
<tex>\{y_t\}_{t=1}^T</tex> — значения временного ряда,
<tex>\{y_t\}_{t=1}^T</tex> — значения временного ряда,
 +
<tex>\{y_{At}\}_{t=1}^T</tex> — прогнозные значения модели A,
<tex>\{y_{At}\}_{t=1}^T</tex> — прогнозные значения модели A,
 +
<tex>\{y_{Bt}\}_{t=1}^T</tex> — прогнозные значения модели B,
<tex>\{y_{Bt}\}_{t=1}^T</tex> — прогнозные значения модели B,
 +
<tex>\{e_{At}\}_{t=1}^T</tex> и <tex>\{e_{Bt}\}_{t=1}^T</tex> — остатки прогнозов обеих моделей,
<tex>\{e_{At}\}_{t=1}^T</tex> и <tex>\{e_{Bt}\}_{t=1}^T</tex> — остатки прогнозов обеих моделей,
 +
<tex>g(e)</tex> — функция потерь,
<tex>g(e)</tex> — функция потерь,
 +
<tex>d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T</tex>.
<tex>d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T</tex>.
-
Если <tex>\{d_{t}\}_{t=1}^T</tex> является слабостационарным временным рядом, то можно показать, что <tex>\sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f)</tex>, где <tex>\bar d =\frac1T \sum_1^{T} d_t</tex>, <tex>\mu</tex> — неизвестное матожидание процесса, <tex>f</tex> — его дисперсия. Проверямая в критерии гипотеза <tex>H_0</tex>: <tex>\mathbf{E}d=0</tex>, альтернатива (двусторонняя): <tex>\mathbf{E}d\neq0</tex>. Вычисляемая статистика: <tex>S=\frac{\bar d}{\sqrt{(\bar f / T)}}</tex>, где <tex>\bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau)</tex>, где <tex>\gamma_d(\tau)</tex> — автоковариация <tex>d</tex> порядка <tex>\tau</tex>. Гипотезе <tex>H_0</tex> соответствует <tex>: S \sim N(0, 1)</tex>.
+
Если <tex>\{d_{t}\}_{t=1}^T</tex> является слабостационарным временным рядом, то можно показать, что <tex>\sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f)</tex>, где <tex>\bar d =\frac1T \sum_1^{T} d_t</tex>, <tex>\mu</tex> — неизвестное матожидание процесса, <tex>f</tex> — его дисперсия. Проверямая в критерии гипотеза <tex>H_0</tex>: <tex>\mathbf{E}d=0</tex>, альтернатива (двусторонняя): <tex>\mathbf{E}d\neq0</tex>.
 +
 
 +
Вычисляемая статистика: <tex>S=\frac{\bar d}{\sqrt{(\bar f / T)}}</tex>, где <tex>\bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau)</tex>, где <tex>\gamma_d(\tau)</tex> — автоковариация <tex>d</tex> порядка <tex>\tau</tex>. Гипотезе <tex>H_0</tex> соответствует <tex>: S \sim N(0, 1)</tex>.
==Область применения==
==Область применения==

Версия 03:34, 24 января 2014

Содержание

Критерий Диболда-Мариано (Diebold-Mariano test) — статистический тест, позволяющий сравнивать качество прогнозов временного ряда двух предсказательных моделей. Впервые был представлен в работе Диболда и Мариано в 1995 году, где был приведен небольшой обзор тестов такого рода.

Описание

Пусть \{y_t\}_{t=1}^T — значения временного ряда,

\{y_{At}\}_{t=1}^T — прогнозные значения модели A,

\{y_{Bt}\}_{t=1}^T — прогнозные значения модели B,

\{e_{At}\}_{t=1}^T и \{e_{Bt}\}_{t=1}^T — остатки прогнозов обеих моделей,

g(e) — функция потерь,

d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T.

Если \{d_{t}\}_{t=1}^T является слабостационарным временным рядом, то можно показать, что \sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f), где \bar d =\frac1T \sum_1^{T} d_t, \mu — неизвестное матожидание процесса, f — его дисперсия. Проверямая в критерии гипотеза H_0: \mathbf{E}d=0, альтернатива (двусторонняя): \mathbf{E}d\neq0.

Вычисляемая статистика: S=\frac{\bar d}{\sqrt{(\bar f / T)}}, где \bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau), где \gamma_d(\tau) — автоковариация d порядка \tau. Гипотезе H_0 соответствует : S \sim N(0, 1).

Область применения

Этот тест является устойчивым к различным отклонениям от стандартных предположенный о свойствах ошибок прогнозирования. А именно предполагается, что ошибки прогнозирования могут не удовлетворять классическим критериям, т.е. могут не быть нормальными, иметь ненулевой средний уровень, а также быть серийно и одновременно коррелированными. Рассмотренный способ проверки гипотезы о совпадении качества прогнозов, основанных на различных моделях, является надежным для широкого класса функций потерь. В частности, функции потерь не обязаны быть квадратическими или симметричными и непрерывными. Помимо этого, отметим еще раз, что ошибки прогнозирования могут не быть гауссовскими, а также могут иметь ненулевой средний уровень и быть коррелированными (как серийно, так и одновременно). Последнее допущение особенно важно, поскольку сравниваемые прогнозы являются прогнозами одного и того же временного ряда и основаны на довольно сильно совпадающих информационных множествах, вследствие чего ошибки прогнозирования могут быть сильно одновременно коррелированными. Однако ошибки прогнозирования в общем случае являются серийно коррелированными, и предложенный тест позволяет учитывать и эту особенность. Также возможны модификации критерия для односторонних альтернатив и для коротких временных рядов.

Программные реализации

  • Для Matlab.
  • Для R есть функция dm.test из пакета forecast.

Ссылки

Личные инструменты