Критерий Диболда-Мариано
Материал из MachineLearning.
Строка 7: | Строка 7: | ||
Пусть | Пусть | ||
<tex>\{y_t\}_{t=1}^T</tex> — значения временного ряда, | <tex>\{y_t\}_{t=1}^T</tex> — значения временного ряда, | ||
+ | |||
<tex>\{y_{At}\}_{t=1}^T</tex> — прогнозные значения модели A, | <tex>\{y_{At}\}_{t=1}^T</tex> — прогнозные значения модели A, | ||
+ | |||
<tex>\{y_{Bt}\}_{t=1}^T</tex> — прогнозные значения модели B, | <tex>\{y_{Bt}\}_{t=1}^T</tex> — прогнозные значения модели B, | ||
+ | |||
<tex>\{e_{At}\}_{t=1}^T</tex> и <tex>\{e_{Bt}\}_{t=1}^T</tex> — остатки прогнозов обеих моделей, | <tex>\{e_{At}\}_{t=1}^T</tex> и <tex>\{e_{Bt}\}_{t=1}^T</tex> — остатки прогнозов обеих моделей, | ||
+ | |||
<tex>g(e)</tex> — функция потерь, | <tex>g(e)</tex> — функция потерь, | ||
+ | |||
<tex>d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T</tex>. | <tex>d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T</tex>. | ||
- | Если <tex>\{d_{t}\}_{t=1}^T</tex> является слабостационарным временным рядом, то можно показать, что <tex>\sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f)</tex>, где <tex>\bar d =\frac1T \sum_1^{T} d_t</tex>, <tex>\mu</tex> — неизвестное матожидание процесса, <tex>f</tex> — его дисперсия. Проверямая в критерии гипотеза <tex>H_0</tex>: <tex>\mathbf{E}d=0</tex>, альтернатива (двусторонняя): <tex>\mathbf{E}d\neq0</tex>. Вычисляемая статистика: <tex>S=\frac{\bar d}{\sqrt{(\bar f / T)}}</tex>, где <tex>\bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau)</tex>, где <tex>\gamma_d(\tau)</tex> — автоковариация <tex>d</tex> порядка <tex>\tau</tex>. Гипотезе <tex>H_0</tex> соответствует <tex>: S \sim N(0, 1)</tex>. | + | Если <tex>\{d_{t}\}_{t=1}^T</tex> является слабостационарным временным рядом, то можно показать, что <tex>\sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f)</tex>, где <tex>\bar d =\frac1T \sum_1^{T} d_t</tex>, <tex>\mu</tex> — неизвестное матожидание процесса, <tex>f</tex> — его дисперсия. Проверямая в критерии гипотеза <tex>H_0</tex>: <tex>\mathbf{E}d=0</tex>, альтернатива (двусторонняя): <tex>\mathbf{E}d\neq0</tex>. |
+ | |||
+ | Вычисляемая статистика: <tex>S=\frac{\bar d}{\sqrt{(\bar f / T)}}</tex>, где <tex>\bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau)</tex>, где <tex>\gamma_d(\tau)</tex> — автоковариация <tex>d</tex> порядка <tex>\tau</tex>. Гипотезе <tex>H_0</tex> соответствует <tex>: S \sim N(0, 1)</tex>. | ||
==Область применения== | ==Область применения== |
Версия 03:34, 24 января 2014
|
Критерий Диболда-Мариано (Diebold-Mariano test) — статистический тест, позволяющий сравнивать качество прогнозов временного ряда двух предсказательных моделей. Впервые был представлен в работе Диболда и Мариано в 1995 году, где был приведен небольшой обзор тестов такого рода.
Описание
Пусть — значения временного ряда,
— прогнозные значения модели A,
— прогнозные значения модели B,
и — остатки прогнозов обеих моделей,
— функция потерь,
.
Если является слабостационарным временным рядом, то можно показать, что , где , — неизвестное матожидание процесса, — его дисперсия. Проверямая в критерии гипотеза : , альтернатива (двусторонняя): .
Вычисляемая статистика: , где , где — автоковариация порядка . Гипотезе соответствует .
Область применения
Этот тест является устойчивым к различным отклонениям от стандартных предположенный о свойствах ошибок прогнозирования. А именно предполагается, что ошибки прогнозирования могут не удовлетворять классическим критериям, т.е. могут не быть нормальными, иметь ненулевой средний уровень, а также быть серийно и одновременно коррелированными. Рассмотренный способ проверки гипотезы о совпадении качества прогнозов, основанных на различных моделях, является надежным для широкого класса функций потерь. В частности, функции потерь не обязаны быть квадратическими или симметричными и непрерывными. Помимо этого, отметим еще раз, что ошибки прогнозирования могут не быть гауссовскими, а также могут иметь ненулевой средний уровень и быть коррелированными (как серийно, так и одновременно). Последнее допущение особенно важно, поскольку сравниваемые прогнозы являются прогнозами одного и того же временного ряда и основаны на довольно сильно совпадающих информационных множествах, вследствие чего ошибки прогнозирования могут быть сильно одновременно коррелированными. Однако ошибки прогнозирования в общем случае являются серийно коррелированными, и предложенный тест позволяет учитывать и эту особенность. Также возможны модификации критерия для односторонних альтернатив и для коротких временных рядов.
Программные реализации
Ссылки
- Статистический анализ данных (курс лекций, К.В. Воронцов)
- K. Bouman. Quantitative methods in international finance and macroeconomics. Econometric Institute, 2011. Lecture FEM21004-11