Критерий Диболда-Мариано

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
'''Критерий Диболда-Мариано''' (Diebold-Mariano test) -- статистический тест, позволяющий сравнивать качество прогнозов [[Временной_ряд|временного ряда]] двух предсказательных моделей. Впервые был представлен в работе Диболда и Мариано в 1995 году, где был приведен небольшой обзор тестов такого рода. Этот тест является устойчивым к различным отклонениям от стандартных предположенный о свойствах ошибок прогнозирования. А именно предполагается, что ошибки прогнозирования могут не удовлетворять классическим критериям, т.е. могут не быть нормальными, иметь ненулевой средний уровень, а также быть серийно и одновременно коррелированными.
+
'''Критерий Диболда-Мариано''' (Diebold-Mariano test) статистический тест, позволяющий сравнивать качество прогнозов [[Временной_ряд|временного ряда]] двух предсказательных моделей. Впервые был представлен в работе Диболда и Мариано в 1995 году, где был приведен небольшой обзор тестов такого рода. Этот тест является устойчивым к различным отклонениям от стандартных предположенный о свойствах ошибок прогнозирования. А именно предполагается, что ошибки прогнозирования могут не удовлетворять классическим критериям, т.е. могут не быть нормальными, иметь ненулевой средний уровень, а также быть серийно и одновременно коррелированными.
==Описание==
==Описание==
Пусть
Пусть
-
<tex>\{y_t\}_{t=1}^T</tex>, <tex>\{y_{At}\}_{t=1}^T</tex> -- прогнозные значения модели A,
+
<tex>\{y_t\}_{t=1}^T</tex>, <tex>\{y_{At}\}_{t=1}^T</tex> прогнозные значения модели A,
-
<tex>\{y_{Bt}\}_{t=1}^T</tex> -- прогнозные значения модели B,
+
<tex>\{y_{Bt}\}_{t=1}^T</tex> прогнозные значения модели B,
-
<tex>\{e_{At}\}_{t=1}^T</tex> и <tex>\{e_{Bt}\}_{t=1}^T</tex>-- остатки прогнозов обеих моделей,
+
<tex>\{e_{At}\}_{t=1}^T</tex> и <tex>\{e_{Bt}\}_{t=1}^T</tex> остатки прогнозов обеих моделей,
-
<tex>g(e)</tex> -- функция потерь,
+
<tex>g(e)</tex> функция потерь,
<tex>d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T</tex>.
<tex>d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T</tex>.
-
Если <tex>\{d_{t}\}_{t=1}^T</tex> является слабостационарным временным рядом, то можно показать, что <tex>\sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f)</tex>, где <tex>\bar d =\frac1T \sum_1^{T} d_t</tex>, <tex>\mu</tex> - неизвестное матожидание процесса, <tex>f</tex> - его дисперсия. Проверямая в критерии гипотеза <tex>H_0</tex>: <tex>\mathbf{E}d=0</tex>, альтернатива (двусторонняя): <tex>\mathbf{E}d\neq0</tex>. Вычисляемая статистика: <tex>S=\frac{\bar d}{\sqrt{(\bar f / T)}}</tex>, где <tex>\bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau)</tex>, где <tex>\gamma_d(\tau)</tex> -- автоковариация <tex>d</tex> порядка <tex>\tau</tex>. Гипотезе <tex>H_0</tex> соответствует <tex>: S \sim N(0, 1)</tex>.
+
Если <tex>\{d_{t}\}_{t=1}^T</tex> является слабостационарным временным рядом, то можно показать, что <tex>\sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f)</tex>, где <tex>\bar d =\frac1T \sum_1^{T} d_t</tex>, <tex>\mu</tex> неизвестное матожидание процесса, <tex>f</tex> его дисперсия. Проверямая в критерии гипотеза <tex>H_0</tex>: <tex>\mathbf{E}d=0</tex>, альтернатива (двусторонняя): <tex>\mathbf{E}d\neq0</tex>. Вычисляемая статистика: <tex>S=\frac{\bar d}{\sqrt{(\bar f / T)}}</tex>, где <tex>\bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau)</tex>, где <tex>\gamma_d(\tau)</tex> автоковариация <tex>d</tex> порядка <tex>\tau</tex>. Гипотезе <tex>H_0</tex> соответствует <tex>: S \sim N(0, 1)</tex>.
==Дополнительно==
==Дополнительно==
-
Рассмотренный способ проверки гипотезы о совпадении каче�ства прогнозов, основанных на различных моделях, является на�дежным для широкого класса функций потерь. В частности, функ�ции потерь не обязаны быть квадратическими или симметричными и непрерывными. Помимо этого, отметим еще раз, что ошибки прогнозирования могут не быть гауссовскими, а также могут иметь ненулевой средний уровень и быть коррелированными (как серий�но, так и одновременно). Последнее допущение особенно важно, поскольку сравниваемые прогнозы являются прогнозами одного и того же временного ряда и основаны на довольно сильно совпа�дающих информационных множествах, вследствие чего ошибки прогнозирования могут быть сильно одновременно коррелирован�ными. Однако ошибки прогнозирования в общем случае являются серийно коррелированными, и предложенный тест позволяет учи�тывать и эту особенность.
+
Рассмотренный способ проверки гипотезы о совпадении качества прогнозов, основанных на различных моделях, является надежным для широкого класса функций потерь. В частности, функции потерь не обязаны быть квадратическими или симметричными и непрерывными. Помимо этого, отметим еще раз, что ошибки прогнозирования могут не быть гауссовскими, а также могут иметь ненулевой средний уровень и быть коррелированными (как серийно, так и одновременно). Последнее допущение особенно важно, поскольку сравниваемые прогнозы являются прогнозами одного и того же временного ряда и основаны на довольно сильно совпадающих информационных множествах, вследствие чего ошибки прогнозирования могут быть сильно одновременно коррелированными. Однако ошибки прогнозирования в общем случае являются серийно коррелированными, и предложенный тест позволяет учитывать и эту особенность. Также возможны модификации критерия для односторонних альтернатив и для коротких временных рядов.
-
 
+
-
Также возможны модификации критерия для односторонних альтернатив и для коротких временных рядов.
+
-
 
+
==Программные реализации==
==Программные реализации==
-
 
+
* [http://www.mathworks.com/matlabcentral/fileexchange/33979-diebold-mariano-test-statistic для Matlab].
-
* В MATLAB [http://www.mathworks.com/help/econ/parcorr.html функция parcorr]
+
* Для R есть функция dm.test из пакета [http://cran.r-project.org/web/packages/forecast/forecast.pdf forecast].
-
* В R [http://stat.ethz.ch/R-manual/R-patched/library/stats/html/acf.html функция pacf] из пакета stats.
+
-
* В Python [http://statsmodels.sourceforge.net/stable/generated/statsmodels.tsa.stattools.pacf.html#statsmodels.tsa.stattools.pacf функция statsmodels.tsa.stattools.pacf] библиотеки statsmodels.
+
== Ссылки ==
== Ссылки ==
<references />
<references />
* [http://www.mathworks.com/help/econ/autocorrelation-and-partial-autocorrelation.html Autocorrelation and Partial Autocorrelation]. MATLAB R2013b Documentation
* [http://www.mathworks.com/help/econ/autocorrelation-and-partial-autocorrelation.html Autocorrelation and Partial Autocorrelation]. MATLAB R2013b Documentation
-
* [http://en.wikipedia.org/wiki/Partial_autocorrelation_function Partial Autocorrelation function] on Wikipedia
 
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29 Статистический анализ данных (курс лекций, К.В. Воронцов)]
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29 Статистический анализ данных (курс лекций, К.В. Воронцов)]
-
* Box, G. E. P.; Jenkins, G. M.; Reinsel, G. C. (2008). Time Series Analysis, Forecasting and Control (4th ed.). Hoboken, NJ: Wiley. ISBN 9780470272848.
+
* K. Bouman. Quantitative methods in international finance and macroeconomics. Econometric Institute, 2011. Lecture FEM21004-11
-
 
+
[[Категория:Регрессионный анализ]]
[[Категория:Регрессионный анализ]]
[[Категория:Анализ временных рядов]]
[[Категория:Анализ временных рядов]]

Версия 19:00, 23 января 2014

Содержание

Критерий Диболда-Мариано (Diebold-Mariano test) — статистический тест, позволяющий сравнивать качество прогнозов временного ряда двух предсказательных моделей. Впервые был представлен в работе Диболда и Мариано в 1995 году, где был приведен небольшой обзор тестов такого рода. Этот тест является устойчивым к различным отклонениям от стандартных предположенный о свойствах ошибок прогнозирования. А именно предполагается, что ошибки прогнозирования могут не удовлетворять классическим критериям, т.е. могут не быть нормальными, иметь ненулевой средний уровень, а также быть серийно и одновременно коррелированными.

Описание

Пусть \{y_t\}_{t=1}^T, \{y_{At}\}_{t=1}^T — прогнозные значения модели A, \{y_{Bt}\}_{t=1}^T — прогнозные значения модели B, \{e_{At}\}_{t=1}^T и \{e_{Bt}\}_{t=1}^T — остатки прогнозов обеих моделей, g(e) — функция потерь, d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T.

Если \{d_{t}\}_{t=1}^T является слабостационарным временным рядом, то можно показать, что \sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f), где \bar d =\frac1T \sum_1^{T} d_t, \mu — неизвестное матожидание процесса, f — его дисперсия. Проверямая в критерии гипотеза H_0: \mathbf{E}d=0, альтернатива (двусторонняя): \mathbf{E}d\neq0. Вычисляемая статистика: S=\frac{\bar d}{\sqrt{(\bar f / T)}}, где \bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau), где \gamma_d(\tau) — автоковариация d порядка \tau. Гипотезе H_0 соответствует : S \sim N(0, 1).


Дополнительно

Рассмотренный способ проверки гипотезы о совпадении качества прогнозов, основанных на различных моделях, является надежным для широкого класса функций потерь. В частности, функции потерь не обязаны быть квадратическими или симметричными и непрерывными. Помимо этого, отметим еще раз, что ошибки прогнозирования могут не быть гауссовскими, а также могут иметь ненулевой средний уровень и быть коррелированными (как серийно, так и одновременно). Последнее допущение особенно важно, поскольку сравниваемые прогнозы являются прогнозами одного и того же временного ряда и основаны на довольно сильно совпадающих информационных множествах, вследствие чего ошибки прогнозирования могут быть сильно одновременно коррелированными. Однако ошибки прогнозирования в общем случае являются серийно коррелированными, и предложенный тест позволяет учитывать и эту особенность. Также возможны модификации критерия для односторонних альтернатив и для коротких временных рядов.


Программные реализации

Ссылки

Личные инструменты