Участник:Riabenko/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Задания)
м
Строка 6: Строка 6:
<tex>\sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,</tex> <br>
<tex>\sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,</tex> <br>
<tex>n_1=n_2=n_3=20.</tex> <br>
<tex>n_1=n_2=n_3=20.</tex> <br>
-
 
+
Посмотрим, как от расстояний между выборками и дисперсий зависят средний достигаемый уровень значимости и мощность используемого по умолчанию критерия Фишера:
-
 
+
<gallery widths="250px" heights="250px">
-
 
+
Изображение:3000_p.png|Значения достигаемого уровня значимости, усрёднённого по 3000 экспериментам.
-
== Задания ==
+
Изображение:3000_pow.png|Значения эмпирических оценок мощности критерия при проведении 3000 экспериментов <tex>(\alpha=0.05).</tex>
-
=== Дисперсионный анализ ===
+
</gallery>
-
Исследовать чувствительность однофакторного дисперсионного анализа и соответствующей процедуры для попарного сравнения средних. <br>
+
Зависимость выглядит естественно: мощность растёт при увеличении расстояния между выборками и уменьшении дисперсии.
-
<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,m.</tex>
+
-
 
+
-
::Матвеева: критерий Фишера и процедура Тьюки-Крамера; сравнить результаты применения процедур Тьюки-Крамера и ЛСД.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br>
+
-
 
+
-
::Игнатьев: критерий Фишера и процедура Тьюки-Крамера.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_2=\sigma_3 = 1,\;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
+
-
 
+
-
::Некрасов: критерий Фишера и процедура Тьюки-Крамера.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
+
-
 
+
-
::Фигурнов: критерий Фишера и сравнение средних с использованием поправки Бонферрони; сравнить результаты применения поправки Бонферрони и метода ЛСД.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br>
+
-
 
+
-
::Сабурова: критерий Фишера и сравнение средних с использованием поправки Бонферрони.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
+
-
 
+
-
::Артюхин: критерий Краскела-Уоллиса и метод ЛСД; сравнить результаты применения критериев Краскелла-Уоллиса и Фишера.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
+
-
 
+
-
::Бобрик: критерий Краскела-Уоллиса и метод ЛСД; сравнить результаты применения критериев Краскелла-Уоллиса и Фишера.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_2=\sigma_3 = 1,\;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
+
-
 
+
-
::Зимовнов: критерий Джонкхиера и метод ЛСД; сравнить результаты применения критериев Джонкхиера и Краскелла-Уоллиса.
+
-
:::<tex>m=3, \;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br>
+
-
 
+
-
::Шанин: критерий Фишера и процедура Тьюки-Крамера.
+
-
:::<tex>m=2\,:\,1\,:\,30, \;\; \mu_1=0, \;\; \mu_{i} = \mu_{i-1} + \mu, \; i=2,\ldots,m, \;\; \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_i=1, \; n_i=20, \; i=1,\ldots,m. </tex>
+
-
 
+
-
::Полежаев: критерий Краскела-Уоллиса и метод ЛСД; сравнить результаты применения критериев Краскелла-Уоллиса и Фишера.
+
-
:::<tex>m=2\,:\,1\,:\,30, \;\; \mu_1=0, \;\; \mu_{i} = \mu_{i-1} + 1, \; i=2,\ldots,m</tex><br><tex> \sigma_i=0.02\,:\,0.02\,:\,2, \; n_i=20, \; i=1,\ldots,m. </tex>
+
-
 
+
-
::Панов: критерий Джонкхиера и метод ЛСД; сравнить результаты применения критериев Джонкхиера и Краскелла-Уоллиса.
+
-
:::<tex>m=2\,:\,1\,:\,30, \;\; \mu_1=0, \;\; \mu_{i} = \mu_{i-1} + \mu, \; i=2,\ldots,m, \;\; \mu = 0\,:\,0.01\,:\,1, </tex><br><tex> \sigma_i=1, \; n_i=20, \; i=1,\ldots,m. </tex>
+
-
 
+
-
=== Множественная проверка гипотез ===
+
-
Сравнить мощность и корректность процедур множественной проверки гипотез, контролирующих указанную меру числа ошибок второго рода. <br>
+
-
<tex> x_i^{n}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,m;</tex><br>
+
-
<tex> H_i\,:\;\mu_i=0, \;\; H'_i\,:\;\mu_i\neq 0; \;\;</tex> для проверки гипотезы используется [[критерий Стьюдента]],
+
-
<tex> n=50.</tex>
+
-
====FWER====
+
-
:: Гаврилюк: методы Холма и Шидака,
+
-
:::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FWER\leq\alpha=0.05,</tex> <br>
+
-
:::<tex> \mu_i \sim N(0.5, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
:: Елшин: методы Холма и Шидака,
+
-
:::<tex> m = 10\,:\,5\,:\,100, \;\; m_0 = 10, \;\; FWER\leq\alpha=10^{-10:0.5:-1},</tex>
+
-
:::<tex> \mu_i \sim N(1, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
::Плященко: метод Холма и поправка Бонферрони,
+
-
:::<tex> m = 100, \;\; m_0 = 5\,:\,:5\,:\,100, \;\; FWER\leq\alpha=10^{-10:0.5:-1},</tex>
+
-
:::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
:: Ермушева: метод Холма и поправка Бонферрони,
+
-
:::<tex> m = 100, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FWER\leq\alpha=0.05,</tex>
+
-
:::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
:: Марченко: метод Шидака и поправка Бонферрони,
+
-
:::<tex> m = 10\,:\,5\,:\,100, \;\; m_0 = 10, \;\; FWER\leq\alpha=0.05,</tex>
+
-
:::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
 
+
-
====FDR====
+
-
:: Кириллов: методы Бенджамини-Хохберга и Бенджамини-Иекутиели,
+
-
:::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> <br>
+
-
:::<tex> \mu_i \sim N(0.5, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
::Меркулова: методы Бенджамини-Хохберга и Бенджамини-Иекутиели,
+
-
:::<tex> m = 10\,:\,5\,:\,100, \;\; m_0 = 10, \;\; FDR\leq q=10^{-10:0.5:-1},</tex>
+
-
:::<tex> \mu_i \sim N(1, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
:: Соколов: метод Бенджамини-Хохберга в чистом виде и с модификацией Стори для оценки <tex>m_0</tex>,
+
-
:::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> <br>
+
-
:::<tex> \mu_i \sim N(0.5, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
:: Новиков: метод Бенджамини-Хохберга в чистом виде и метод Бенджамини-Иекутиели с модификацией Стори для оценки <tex>m_0</tex>,
+
-
:::<tex> m = 100, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex>
+
-
:::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+
-
 
+
-
:: Александров: метод Бенджамини-Хохберга в чистом виде и с предварительной процедурой множественной проверки с контролем FDR на уровне <tex>q'</tex> для оценки <tex>m_0</tex>,
+
-
:::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> <br>
+
-
:::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br>
+

Версия 21:46, 24 октября 2012

Задание 2. Исследование свойств многомерного статистического метода на модельных данных

Пример

Исследуем чувствительность однофакторного дисперсионного анализа к расстояниям между выборками и дисперсиям выборок.
x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,
\mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,
\sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,
n_1=n_2=n_3=20.
Посмотрим, как от расстояний между выборками и дисперсий зависят средний достигаемый уровень значимости и мощность используемого по умолчанию критерия Фишера:

Зависимость выглядит естественно: мощность растёт при увеличении расстояния между выборками и уменьшении дисперсии.

Личные инструменты