Аппроксимация Лапласа (пример)
Материал из MachineLearning.
(→Пример 1) |
(→Сэмплирование) |
||
Строка 4: | Строка 4: | ||
'''Сэмплирование''' – метод выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа. | '''Сэмплирование''' – метод выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа. | ||
- | Одно из основных приминений методов сэмплирования заключается в оценке | + | Одно из основных приминений методов сэмплирования заключается в оценке математического ожидания сложных вероятностных распределений: |
<center><tex>E[f]=\int f(z)p(z) dz</tex></center>, | <center><tex>E[f]=\int f(z)p(z) dz</tex></center>, | ||
- | для которых тяжело делать выборку непосредственно из распределения ''p(z)''. Однако, можно подсчитать значение ''p(z)'' в любой точке ''z''. Один из наиболее простых методов подсчета | + | для которых тяжело делать выборку непосредственно из распределения ''p(z)''. Однако, можно подсчитать значение ''p(z)'' в любой точке ''z''. Один из наиболее простых методов подсчета математического ожидаия – разбить ось ''z'' на равномерную сетку и подсчитать интеграл как сумму |
<center> <tex>E[f]</tex> ≅<tex>\sum_{l=1}^{L} f(z^{(l)})p(z^{(l)}) dz</tex></center>. | <center> <tex>E[f]</tex> ≅<tex>\sum_{l=1}^{L} f(z^{(l)})p(z^{(l)}) dz</tex></center>. | ||
Существует несколько методов сэмплирования для создания подходящей выборки длинны ''L'' ???. | Существует несколько методов сэмплирования для создания подходящей выборки длинны ''L'' ???. |
Версия 19:34, 21 ноября 2010
Аппроксимация Лапласа - способ оценки параметров нахождения нормального распределения при апроксимации заданой плотности вероятности.
Содержание[убрать] |
Сэмплирование
Сэмплирование – метод выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа. Одно из основных приминений методов сэмплирования заключается в оценке математического ожидания сложных вероятностных распределений:
для которых тяжело делать выборку непосредственно из распределения p(z). Однако, можно подсчитать значение p(z) в любой точке z. Один из наиболее простых методов подсчета математического ожидаия – разбить ось z на равномерную сетку и подсчитать интеграл как сумму
Существует несколько методов сэмплирования для создания подходящей выборки длинны L ???.
Постановка задачи
Задана выборка — множество значений свободных переменных и множество
соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели
показать зависимость среднеквадратичной ошибки от значений параметров модели:
; построить график и сделать апроксимацию Лапласа для нее; найти расстояния между получеными зависимостями, используя расстояние Кульбака - Лейблера.
Описание алгоритма
Расстояние Кульбака - Лейблера:
Вычислительный эксперимент
Обозначим плоность распределения SSE как , а его апроксимация лапласса
Пример 1
Задуманная функция . Берем линейную регрессионную модель с двумя параметрами:
.
Используя МНК находим оптимальное значение
и
(при которых SSE минимально).
При фиксированном задаем различные значение
(500 случайных значений на отрезке [-1;2]) и строим зависимость:
.
Повторим эксперимент, только теперь варируем сразу оба параметра и
:
апроксимация Лапласса:
На рис.2 наблюдается зависимость между коэффициентами и
. Следовательно, ковариационная матрица cov(w_1,w_2) не будет диагональной.
Смотри также
Литература
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |