Категория:Теория вычислительного обучения

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(шаблон)
м
Строка 2: Строка 2:
'''Теория вычислительного обучения''' (Computational Learning Theory, COLT) изучает методы построения и анализа алгоритмов, обучаемых по прецедентам. Она сосредоточена на получении строгих математических результатов. Основные направления исследований — [[вычислительная сложность]] алгоритмов и [[переобучение|проблема переобучения]].
'''Теория вычислительного обучения''' (Computational Learning Theory, COLT) изучает методы построения и анализа алгоритмов, обучаемых по прецедентам. Она сосредоточена на получении строгих математических результатов. Основные направления исследований — [[вычислительная сложность]] алгоритмов и [[переобучение|проблема переобучения]].
-
{{Tip|Содержание=
+
{{Tip|Список статей на этой странице генерируется автоматически.
-
Список статей на этой странице генерируется автоматически.
+
Чтобы статья попала в данную категорию, в конец статьи необходимо добавить строку:
Чтобы статья попала в данную категорию, в конец статьи необходимо добавить строку:
<pre>
<pre>

Версия 15:15, 19 апреля 2008

Теория вычислительного обучения (Computational Learning Theory, COLT) изучает методы построения и анализа алгоритмов, обучаемых по прецедентам. Она сосредоточена на получении строгих математических результатов. Основные направления исследований — вычислительная сложность алгоритмов и проблема переобучения.

Список статей на этой странице генерируется автоматически.

Чтобы статья попала в данную категорию, в конец статьи необходимо добавить строку:

[[Категория:Теория вычислительного обучения]]