Участник:Slimper/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
-
'''Критерий Бартелса (Bartels test)''' — [[непараметрический статистический критерий]], используемый для проверки случайности ряда наблюдаемых значений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
+
'''Критерий Бартелса (Bartels test)''' — [[непараметрический статистический критерий]], используемый для проверки случайности последовательности наблюдаемых значений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. Критерий Бартелса можно применять для анализа регрессионных остатков.
-
Основной областью применений критерия Бартелса является анализ временных рядов.
+
Также его можно применять при анализе [[временной ряд|временных рядов]] для выявления тренда.
== Примеры задач ==
== Примеры задач ==
'''Пример 1.'''
'''Пример 1.'''
-
Ряд значений состоит из подсчитанного на протяжении нескольких лет количества туристов, въезжавших в страну в течение года.
+
Ряд значений состоит из подсчитанного на протяжении нескольких лет количества туристов, посещавших страну в течение года.
-
Требуется установить, является ли изменение числа туристов случайным, или оно
+
Требуется установить, являются ли число туристов, случайным, или оно
подчиняется какой-то закономерности.
подчиняется какой-то закономерности.
Строка 15: Строка 15:
'''Статистика критерия:'''
'''Статистика критерия:'''
-
# Построить [[вариационный ряд]] выборки <tex>x^{(1)}(x_1,\ldots,x_n)</tex> и найти ранги всех <tex>r(x_i)</tex> элементов.
+
# Построить [[вариационный ряд]] выборки <tex>x^{(1)}(x_1,\ldots,x_n)</tex> и найти ранги <tex>r(x_i)</tex> всех элементов.
# Статистика критерия Бартелса вычисляется по формуле:
# Статистика критерия Бартелса вычисляется по формуле:
::<tex>B = \frac{ \sum_{i = 1}^n (r(x_i) - r(x_{i + 1}) )^2 }{ \sum(R_i - \frac{n + 1}{2})^2}</tex>
::<tex>B = \frac{ \sum_{i = 1}^n (r(x_i) - r(x_{i + 1}) )^2 }{ \sum(R_i - \frac{n + 1}{2})^2}</tex>
Строка 21: Строка 21:
Варианты критерия (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
Варианты критерия (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
-
* двусторонний критерий
+
* двусторонний критерий (против альтернативы, что данные не случайны)
::если <tex> B \in \left[ B_{n,\alpha/2},\, B_{n,1-\alpha/2} \right] </tex>, то нулевая гипотеза отвергается;
::если <tex> B \in \left[ B_{n,\alpha/2},\, B_{n,1-\alpha/2} \right] </tex>, то нулевая гипотеза отвергается;
Строка 33: Строка 33:
===Асимптотический критерий ===
===Асимптотический критерий ===
Распределение статистики Бартелса асимптотически нормально
Распределение статистики Бартелса асимптотически нормально
-
с матожиданием <tex>\mathbb{E}X = 2</tex> и дисперсией
+
с матожиданием <tex>\mathbb{E}B = 2</tex> и дисперсией
-
::<tex> \mathbb{D}X = \frac{4(n - 2)(5n^2 - 2n - 9)}{5n(n + 1)(n - 1)^2} </tex>
+
::<tex> \mathbb{D}B = \frac{4(n - 2)(5n^2 - 2n - 9)}{5n(n + 1)(n - 1)^2} </tex>
-
Нормальную аппроксимацию статистики Бартелса можно использовать при
+
Поэтому при
-
<tex>n \ge 20</tex>.
+
<tex>n \ge 20</tex> используется нормированная статистика Бартелса
-
 
+
::<tex>B' = \frac{B - \mathbb{E}B}{\sqrt{\mathbb{D}B} } </tex>
-
== Свойства критерия Ван дер Вардена ==
+
-
Если выборки подчиняются нормальному распределению, то критерий Ван дер Вардена асимптотически
+
-
имеет ту же мощность, что и [[критерий Стьюдента]].
+
-
 
+
-
При <tex>n + m \to \infty</tex> критерий Ван дер Вардена не уступает в эффективности [[Критерий Стьюдента | критерию Стьюдента]]
+
-
 
+
-
== Многовыборочное обобщение критерия Ван дер Вардена ==
+
-
Заданы <i>k</i> выборок:
+
-
<tex>x_1^{n_1}=\left\{x_{11},\dots,x_{1n_1}\right\}, \dots, x_k^{n_k}=\left\{x_{k1},\dots,x_{kn_k}\right\}</tex>.
+
-
Объединённая выборка: <tex>z=x_1^{n_1}\cup x_2^{n_2}\cup \dots \cup x_k^{n_k}</tex>.
+
-
 
+
-
'''Дополнительные предположения:'''
+
-
* все выборки [[Простая выборка|простые]], объединённая выборка [[Независимая выборка|независима]];
+
-
* выборки взяты из неизвестных непрерывных распределений <tex>F_1(x),\dots,F_k(x)</tex>.
+
-
 
+
-
'''Статистика критерия:'''
+
-
Все <tex>N=\sum_{i=1}^k n_i</tex> элементов выборок упорядочиваются по возрастанию, через <tex>R_{ij}</tex> обозначается ранг <i>j</i>-го элемента <i>i</i>-й выборки в полученном [[вариационный ряд|вариационном ряду]].
+
-
 
+
-
Статистика Ван дер Вардена имеет вид <br />
+
-
:: <tex>T = \left(\sum_{i = 1}^N u^2( \frac{i}{N + 1} ) \right)^{-1} (N - 1) \sum_{i = 1}^{k} \frac{1}{n_i} \left( \sum_{j=1}^{n_i} u^2( \frac{R_{ij}}{N + 1} ) \right)^2</tex> <br/>
+
-
 
+
-
Проверяется [[нулевая гипотеза]] <tex>H_0:\; F_1(x)=\dots=F_k(x)</tex> против альтернативы <tex>H_1:\; F_1(x)=F_2(x-\Delta_1)=\dots=F_k(x-\Delta_{k-1})</tex>.
+
-
 
+
-
Если нулевая гипотеза выполнена, то поведение статистики <tex>T</tex> хорошо описывается
+
-
распределением [[распределение хи-квадрат|хи-квадарат]] с <tex>k - 1</tex> степенью свободы.
+
-
 
+
-
Нулевая гипотеза отвергается при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>, если <tex>T > \chi^2_{1 - \alpha, k - 1}</tex>, где
+
-
<tex>chi^2_{1 - \alpha, k - 1}</tex> — [[квантиль]] уровня <tex>1 -\alpha</tex> с <tex>k - 1</tex> степенью свободы.
+
 +
== Свойства критерия Бартелса==
 +
Бартелс с помошью численного моделирования показал , что во многих случаях критерий Бартелса имеет большую мощность, чем [[Критерий Вальда-Вольфовица|критерий серий]].
== История ==
== История ==
Строка 83: Строка 57:
== Ссылки ==
== Ссылки ==
-
[
+
 
[[Категория:Статистические тесты]]
[[Категория:Статистические тесты]]
[[Категория:Непараметрические статистические тесты]]
[[Категория:Непараметрические статистические тесты]]
{{Задание|Slimper|Vokov|08 января 2010}}
{{Задание|Slimper|Vokov|08 января 2010}}

Версия 18:08, 7 января 2010

Критерий Бартелса (Bartels test)непараметрический статистический критерий, используемый для проверки случайности последовательности наблюдаемых значений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. Критерий Бартелса можно применять для анализа регрессионных остатков. Также его можно применять при анализе временных рядов для выявления тренда.

Содержание

[убрать]

Примеры задач

Пример 1. Ряд значений состоит из подсчитанного на протяжении нескольких лет количества туристов, посещавших страну в течение года. Требуется установить, являются ли число туристов, случайным, или оно подчиняется какой-то закономерности.

Описание критерия

Заданы выборка x^n = (x_1,\ldots,x_n),x_i \in \mathbb{R}.

Нулевая гипотеза H_0:\; — выборка x^n - простая, то есть все наблюдения x_i — независимы и одинаково распределены.

Статистика критерия:

  1. Построить вариационный ряд выборки x^{(1)}(x_1,\ldots,x_n) и найти ранги r(x_i) всех элементов.
  2. Статистика критерия Бартелса вычисляется по формуле:
B = \frac{ \sum_{i = 1}^n (r(x_i) - r(x_{i + 1}) )^2 }{ \sum(R_i - \frac{n + 1}{2})^2}

Варианты критерия (при уровне значимости \alpha):

  • двусторонний критерий (против альтернативы, что данные не случайны)
если  B \in \left[ B_{n,\alpha/2},\, B_{n,1-\alpha/2} \right] , то нулевая гипотеза отвергается;
  • левосторонний критерий(против альтернативы, что наблюдения положительно коррелированы)
если  B < B_{n,\alpha} , то нулевая гипотеза отвергается;
  • правосторонний критерий(против альтернативы, что наблюдения отрицательно коррелированы)
если  B > B_{n,\alpha} , то нулевая гипотеза отвергается;

Здесь  B_{n,\alpha} -- это \alpha-квантиль табличного распределения статистики Бартелса с параметром n.

Асимптотический критерий

Распределение статистики Бартелса асимптотически нормально с матожиданием \mathbb{E}B = 2 и дисперсией

 \mathbb{D}B = \frac{4(n - 2)(5n^2 - 2n - 9)}{5n(n + 1)(n - 1)^2}

Поэтому при n \ge 20 используется нормированная статистика Бартелса

B' = \frac{B - \mathbb{E}B}{\sqrt{\mathbb{D}B} }

Свойства критерия Бартелса

Бартелс с помошью численного моделирования показал , что во многих случаях критерий Бартелса имеет большую мощность, чем критерий серий.

История

Критерий был предложен Бартелсом в 1982 году.

Литература

  1. Gibbons J. D., Chakraborti S. Nonparametric Statistical Inference, 4th Ed. — CRC, 2003 — 608 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

См. также

Ссылки

Данная статья является непроверенным учебным заданием.
Студент: Участник:Slimper
Преподаватель: Участник:Vokov
Срок: 08 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты