Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 2: Строка 2:
TODO:
TODO:
-
# Иллюстрации - критическая область
 
# Графики
# Графики
# Поправка
# Поправка
Строка 36: Строка 35:
'''Асимптотический критерий:'''
'''Асимптотический критерий:'''
 +
 +
[[Изображение:Standard_Normal_Density_-_Double-sided_Critical_Area.png|thumb|Критическая область критерия Вилкоксона.]]
Рассмотрим нормированную и центрированную статистика Уилкоксона:
Рассмотрим нормированную и центрированную статистика Уилкоксона:

Версия 14:17, 4 января 2010

Содержание

TODO:

  1. Графики
  2. Поправка
  3. Номер страницы с таблицей в Кобзаре
  4. Таблица ??? Найти в инете, скопировать и дать ссылку на источник?

Критерий Уилкоксона (Вилкоксона) двухвыборочныйнепараметрический статистический критерий, используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Пример задачи

Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является порядковой).

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n, в противном случае следует поменять выборки местами.

Дополнительные предположения: обе выборки простые, объединённая выборка независима;

Нулевая гипотеза H_0:\; \mathbb{P} \{ x<y \} = 1/2.

Вычисление статистики критерия:

  1. Построить общий вариационный ряд объединённой выборки x^{(1)} \leq \cdots \leq x^{(m+n)} и найти ранги r(x_i),\; r(y_i) всех элементов обеих выборок в общем вариационном ряду.
  2. Рассчитать суммы рангов, соответствующих обеим выборкам:
    R_x = \sum_{i=1}^m r(x_i);
    R_y = \sum_{i=1}^n r(y_i);
  3. Если размеры выборок совпадают (m=n), то значение статистики W будет равняется одной из сумм рангов R_x или R_y (любой). Если же выборки не равны, то W = R_x, то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика W линейно связана со статистикой U-критерия Манна-Уитни.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \mathbb{P} \{ x < y \} \neq 1/2:

если W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right] , то нулевая гипотеза отвергается. Здесь W_{\alpha} есть \alpha-квантиль табличного распределения Уилкоксона с параметрами m,\,n. [1][2]

Асимптотический критерий:

Критическая область критерия Вилкоксона.
Критическая область критерия Вилкоксона.

Рассмотрим нормированную и центрированную статистика Уилкоксона:

\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}};

\tilde W асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы H_1) отвергается, если  |\tilde W| > \Phi_{1-\alpha/2} , где \Phi_{\alpha} есть \alpha-квантиль стандартного нормального распределения.

Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до m = n = 8.[3]

При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:

\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2},[4][5]
где k - количество только тех связок, в которые входят ранги как одной, так и другой выборок, t_1, \ldots, t_k - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину \tilde W не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1. Для элементов связок вычисляется средний ранг.

Применение критерия

В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда \mathbb{P} \{ x<y \} = 1/2, и средние выборок не совпадают.[6] При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.[7]

Критерий является аналогом критерия t-критерия Стьюдента для независимых выборок в случае закона распределения, отличного от нормального, либо данных, измеренных с использованием порядковой шкалы. Для нормально распределённых совокупностей следует использовать более мощный t-критерий.

Критерий Вилкоксона и U-критерий Манна-Уитни

Статистики критериев Вилкоксона и Вилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.[8] Оба они проверяют одну и ту же гипотезу и их границы применимости также совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Вилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,[9], а в случае равных дисперсий применять U-критерий Манна-Уитни.[10]

Проведём эксперимент: будем строить график достигаемого уровня значимости как функцию размера выборок и параметров распределения, усреднённого по нескольким десяткам экспериментов.

<График p-value критерия Вилкоксона для равных дисперсий. Размер выборок 50:50:500. Выборка1 \mathbb{N}(100, 5). Выборка2 \mathbb{N}(100+-0.3, 5)>

Примечания

  1. Кобзарь А. И. Прикладная математическая статистика. — ??? c.
  2. Лапач С. Н. Статистика в науке и бизнесе. — 150 с.
  3. Лапач С. Н. Статистика в науке и бизнесе. — 161 с.
  4. Кобзарь А. И. Прикладная математическая статистика. — 454 c.
  5. Лагутин М. Б. Наглядная математическая статистика. — 206 с.
  6. Орлов А. И. Эконометрика. — 79 с.
  7. Орлов А. И. Эконометрика. — 83 с.
  8. Орлов А. И. Эконометрика. — 75 c.
  9. Лапач С. Н. Статистика в науке и бизнесе. — 160 с.
  10. Лапач С. Н. Статистика в науке и бизнесе. — 118 с.

Литература

  1. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
  2. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
  3. Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — §4.5.
  4. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 576 ??? с.

Ссылки