Участник:Strijov/Drafts
Материал из MachineLearning.
(Различия между версиями)
(→Theme 1: Surface differential geometry) |
|||
Строка 31: | Строка 31: | ||
- | ==Theme 1: Surface differential geometry | + | ==Theme 1: Manifolds == |
+ | |||
+ | ==Code== | ||
+ | Surface differential geometry | ||
[https://www.coursera.org/lecture/image-processing/3-surface-differential-geometry-duration-11-43-vtuJ1 Coursera code video] for Image and Video Processing | [https://www.coursera.org/lecture/image-processing/3-surface-differential-geometry-duration-11-43-vtuJ1 Coursera code video] for Image and Video Processing | ||
- | |||
- | |||
- | |||
==Theme 1: ODE and flows== | ==Theme 1: ODE and flows== |
Версия 19:46, 1 августа 2021
- Geometric deep learning
- Functional data analysis
- Applied mathematics for machine learning
General principles
1. The experiment and measurements defines axioms i
Syllabus and goals
Theme 1:
Message
Basics
Application
Code
https://papers.nips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
Theme 1: Manifolds
Code
Surface differential geometry Coursera code video for Image and Video Processing
Theme 1: ODE and flows
- Neural Ordinary Differential Equations (source paper and code)
- W: Flow-based generative model
- Flows at deepgenerativemodels.github.io
- Знакомство с Neural ODE на хабре
Goes to BME
Theme 1: PDE
(after RBF)
Fourier for fun and practice 1D
Fourier for fun and practice nD
Geometric Algebra
experior product and quaternions
Theme 1: High order splines
Theme 1: Topological data analysis
Theme 1: Homology versus homotopy