Биномиальное распределение
Материал из MachineLearning.
(→Асимптотические приближения при больших n: уточнение) |
|||
Строка 30: | Строка 30: | ||
<tex>|P(X\in B) - P(Y\in B)|\le 2np^2.</tex> | <tex>|P(X\in B) - P(Y\in B)|\le 2np^2.</tex> | ||
+ | |||
+ | Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12]. | ||
+ | |||
+ | '''Приближение нормальным распределением''' используется в ситуациях, когда <tex>n\to\infty</tex>, а <tex>p</tex> фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении <tex>X</tex> в виде суммы <tex>n</tex> слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины | ||
+ | |||
+ | <tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{np(1-p)}</tex> | ||
+ | |||
+ | близко к стандартному нормальному. | ||
+ | |||
+ | '''Локальная теорема Муавра-Лапласа''' используется для приближенного вычисления вероятностей отдельных значений. Она утверждает [1, гл. I, §6], что равномерно по всем значениям <tex>k</tex>, таким что <tex>|k-np|=o(np(1-p))^{2/3}</tex>, имеет место | ||
+ | |||
+ | <tex>P(X=k)\sim\frac{1}{\sqrt{2\pi np(1-p)}}e^{-\frac{(k-np)^2}{2np(1-p)}}=\frac{1}{\sqrt{np(1-p)}}\varphi\left(\frac{k-np}{\sqrt{np(1-p)}}\right),</tex> где <tex>\varphi</tex> - плотность стандартного нормального распределения. | ||
+ | |||
+ | |||
+ | |||
+ | ==Литература== | ||
+ | 1. {{книга | ||
+ | |автор = Ширяев А.Н. | ||
+ | |заглавие = Вероятность | ||
+ | |год = 2004 | ||
+ | |место = М. | ||
+ | |издательство = МЦНМО | ||
+ | }} | ||
+ | |||
== Ссылки == | == Ссылки == |
Версия 10:00, 3 ноября 2009
Содержание |
Определение
Биномиальное распределение - дискретное распределение вероятностей случайной величины , принимающей целочисленные значения с вероятностями:
.
Данное распределение характеризуется двумя параметрами: целым числом , называемым числом испытаний, и вещественным числом , , называемом вероятностью успеха в одном испытании. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из независимых испытаний, в каждом из которых может произойти "успех" с вероятностью , то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы независимых слагаемых, имеющих распределение Бернулли.
Основные свойства
- Математическое ожидание:
- Дисперсия:
- Асимметрия: ; при распределение симметрично относительно центра
Асимптотические приближения при больших n
Если значения велики, то непосредственное вычисление вероятностей событий, связанных с данной случайной величиной, технически затруднительно. В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).
Приближение распределением Пуассона применяется в ситуациях, когда значения большие, а значения близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром .
Строгая формулировка: если и таким образом, что , то
Более того, справедлива следующая оценка. Пусть - случайная величина, имеющая распределение Пуассона с параметром . Тогда для произвольного множества справедливо неравенство:
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
Приближение нормальным распределением используется в ситуациях, когда , а фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении в виде суммы слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
близко к стандартному нормальному.
Локальная теорема Муавра-Лапласа используется для приближенного вычисления вероятностей отдельных значений. Она утверждает [1, гл. I, §6], что равномерно по всем значениям , таким что , имеет место
где - плотность стандартного нормального распределения.
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.
Ссылки
- Биномиальное распределение (Википедия)
- Binomial distribution (Wikipedia)