Статистический анализ данных (курс лекций, К.В.Воронцов)
Материал из MachineLearning.
м (→Введение) |
м (→Программа курса) |
||
Строка 33: | Строка 33: | ||
* Гипотеза о равенстве дисперсий: [[критерий Фишера]], [[критерий Кокрена]], [[критерий Бартлета]]. | * Гипотеза о равенстве дисперсий: [[критерий Фишера]], [[критерий Кокрена]], [[критерий Бартлета]]. | ||
* Критерии нормальности: [[Критерий Шапиро-Уилка]], [[критерий Колмогорова-Смирнова]], [[критерий омега-квадрат]] фон Мизеса, [[критерий хи-квадрат]] (Пирсона). Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Упрощённые проверки нормальности по асимметрии и эксцессу. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77]. | * Критерии нормальности: [[Критерий Шапиро-Уилка]], [[критерий Колмогорова-Смирнова]], [[критерий омега-квадрат]] фон Мизеса, [[критерий хи-квадрат]] (Пирсона). Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Упрощённые проверки нормальности по асимметрии и эксцессу. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77]. | ||
+ | |||
+ | [[Media:Sem2.pdf|Материалы семинара по теме]] | ||
=== Непараметрическая проверка гипотез === | === Непараметрическая проверка гипотез === |
Версия 21:44, 21 февраля 2011
Курс знакомит студентов с основными задачами и методами прикладной статистики.
Цели курса — связать теорию и практику, научить студентов «видеть» статистические задачи в различных предметных областях и правильно применять методы прикладной статистики, показать на практических примерах возможности и ограничения статистических методов. Курс имеет скорее методологическую, чем математическую направленность и не содержит доказательств теорем.
Каждый метод описывается по единой схеме:
- постановка задачи;
- примеры прикладных задач из области экономики, социологии, производства, медицины;
- базовые предположения и границы применимости;
- описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её функция распределения с эскизом графика, критическая область);
- достоинства, недостатки, ограничения, «подводные камни»;
- сравнение с другими методами.
Курс читается студентам 5 курса кафедры Математические методы прогнозирования ВМиК МГУ, начиная с 2007 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики, знакомы с элементами дискриминантного, факторного и кластерного анализа (по кафедральному курсу «Математические методы распознавания образов»), регрессионного анализа и анализа временных рядов (по кафедральному курсу ММП).
Программа курса
Введение
Обзор необходимых сведений из теории вероятностей и математической статистики.
- Понятия простой выборки и статистики. Примеры статистик: моменты, асимметрия и эксцесс, вариационный ряд и порядковые статистики, эмпирическое распределение.
- Проверка статистических гипотез, основные понятия: уровень значимости, пи-величина (p-value), критическая область, критическая функция, ошибки I и II рода. Односторонние и двусторонние критические области.
- Свойства критериев: несмещённость, состоятельность, равномерная мощность.
- Статистические точечные оценки и их свойства: несмещённость, состоятельность, эффективность, достаточность, робастность.
- Интервальные оценки, понятия доверительного интервала и коэффициента доверия. Доверительное оценивание по вариационному ряду. Доверительные интервалы для среднего и медианы [Лапач, 104].
Параметрическая проверка гипотез
- Нормальные параметрические критерии для проверки гипотез: гипотезы о положении, гипотезы о рассеивании [Лапач, §3.2]. Примеры прикладных задач из областей медицины, агрономии, маркетинга.
- Систематизация критериев.
- Гипотеза о равенстве средних: критерий Стьюдента для одной и двух выборок, связанные выборки, гипотеза сдвига, метод множественных сравнений Шеффе, метод LSD. Пример: задача формирования ценовых коридоров.
- Гипотеза о равенстве дисперсий: критерий Фишера, критерий Кокрена, критерий Бартлета.
- Критерии нормальности: Критерий Шапиро-Уилка, критерий Колмогорова-Смирнова, критерий омега-квадрат фон Мизеса, критерий хи-квадрат (Пирсона). Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Упрощённые проверки нормальности по асимметрии и эксцессу. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77].
Непараметрическая проверка гипотез
- Непараметрические ранговые критерии для проверки гипотез: Критерий Уилкоксона-Манна-Уитни, гипотезы о положении, гипотезы о рассеивании [Лапач, §3.3].
- Элементы теории измерений: номинальные, порядковые и количественные переменные; инварианты. Разновидности средних: по Коши, по Колмогорову, мода, медиана. Среднее в порядковой шкале [Орлов, гл. 3]. Пример: маркетинговое исследование привлекательности продуктов (образовательных услуг); важность постановки вопросов при формировании анкет [Орлов, 229].
- Вариационный ряд, ранги и связки.
- Ранговые критерии: критерий Уилкоксона-Манна-Уитни, критерий знаков, критерий Уилкоксона двухвыборочный, критерий Уилкоксона для связных выборок, критерий Краскела-Уоллиса, критерий Зигеля-Тьюки, медианный критерий: одновыборочный и двухвыборочный.
- Доверительные интервалы для медианы (Уилкоксона-Мозеса) и сдвига (Уилкоксона-Тьюки).
- Множественные сравнения на основе рангов Фридмана.
Анализ таблиц сопряженности (кросстабуляции)
[Лапач, 204, 316, Лагутин, Т2:174, Кулаичев, 162].
- Критерий согласия Пирсона: простая гипотеза, сложная гипотеза.
- Таблица сопряженности: K×L и 2×2.
- Парадокс хи-квадрат [Лагутин, Т2:84].
- Точный тест Фишера.
- Понятие закономерности в алгоритмах классификации, статистические и логические закономерности. Примеры: посещаемость сайтов пользователями Интернет, анализ результатов голосования, маркетинговые исследования.
Дисперсионный анализ (ANOVA)
[Лапач, 193, Кулаичев, 170].
- Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж.
- Однофакторная параметрическая модель: метод Шеффе.
- Однофакторная непараметрическая модель: критерий Краскела-Уоллиса, критерий Джонкхиера.
- Общий случай модели с постоянными факторами, теорема Кокрена.
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
- Двухфакторный нормальный анализ.
- Ковариационный анализ (постановка задачи).
Корреляционный анализ
[Лапач, 174].
- Корреляция Пирсона, значимость коэффициента корреляции (критерий Стьюдента).
- Частная корреляция, значимость коэффициента частной корреляции.
- Множественная корреляция, значимость коэффициента множественной корреляции.
- Ранговая корреляция, коэффициент корреляции Спирмена, коэффициент корреляции Кенделла.
- Конкордация Кенделла.
Линейный регрессионный анализ
- Многомерная линейная регрессия. Примеры прикладных задач. Метод наименьших квадратов.
- МНК-решение и его запись через сингулярное разложение. Остаточная сумма квадратов (RSS).
- Основные предположения многомерной линейной регрессии. Статистические свойства МНК-оценок без предположения нормальности.
- Статистические свойства МНК-оценок при предположении нормальности. Доверительные интервалы для дисперсии шума, коэффициентов регрессии, прогнозного значения отклика.
Анализ регрессионных моделей
- Анализ структуры линейной регрессионной модели. Значимость коэффициентов линейной регрессии (проверка равенства коэффициентов нулю), вложенные модели линейной регрессии, критерий Фишера. Шаговая регрессия.
- Проверка адекватности модели. Выборочный коэффициент детерминации. Дисперсия остатков.
- Проблема мультиколлинеарности. Методы понижения размерности: ридж-регрессия, лассо Тибширани, параметр селективности.
Анализ регрессионных остатков
- Анализ регрессионных остатков: визуальный анализ.
- Непараметрические тесты: критерий Уилкоксона-Манна-Уитни, критерий Зигеля-Тьюки, критерий знаков, критерий серий, критерий экстремумов.
- Проверка нормальности остатков: Критерий Шапиро-Уилка, критерий Колмогорова-Смирнова, критерий омега-квадрат фон Мизеса, критерий хи-квадрат Пирсона, критерии асимметрии и эксцесса.
- Тест на корреляцию остатков, статистика Дарбина-Уотсона.
Непараметрическая регрессия
- Непараметрическая регрессия: ядерное сглаживание, формула Надарая-Ватсона. Разложение ошибки на вариацию и смещение. Выбор ядра и ширины окна. Окна переменной ширины. Доверительный интервал прогнозного значения отклика. Проблема выбросов, Алгоритм LOWESS.
- Совмещение многомерной линейной регрессии и одномерного сглаживания: метод настройки с возвращениями (backfitting).
- Примеры прикладных задач: анализ стиля управления инвестиционным портфелем, анализ деятельности паевых инвестиционных фондов.
- Регуляризация коэффициентов регрессии, медленно изменяющихся во времени.
Анализ рисков. Пробит- и логит-анализ
[Лапач, 387].
- Пробит-анализ и логит-анализ. Приложения в токсикологии, страховании, эконометрике (оценивание спроса). Оценивание апостериорных вероятностей в задачах классификации. Анализ кредитных рисков: оценивание вероятности дефолта, имитационное моделирование.
- Анализ выживаемости. Функция выживаемости и функция интенсивности рисков. Процедура Каплана-Мейера. Доверительный интервал выживаемости.
- Сравнение двух функций выживаемости: логранговый критерий, критерий Гехана.
Анализ временных рядов
[Лукашин]
- Временной ряд. Примеры: прогнозирование объёмов грузоперевозок, объёмов продаж, спроса и цен на электроэнергию.
- Основные компоненты эконометрических временных рядов: тренд, сезонность, календарные эффекты. Аддитивная модель временного ряда. Постановка линейной регрессионной задачи и МНК. Регуляризация сезонного профиля на временных рядах с малым числом периодов.
- Статистические тесты для проверки гипотезы тренда: критерий Аббе-Линника, критерий Кокса-Стюарта, критерий Фостера-Стюарта.
- Автокорреляционная функция. Коррелограмма и её интерпретация. Проверка гипотезы о равенстве нулю автокорреляции.
Адаптивные методы прогнозирования
[Лукашин]
- Модель Брауна — экспоненциальное сглаживание.
- Модель Хольта — линейный тренд без сезонности.
- Модель Хольта-Уинтерса — мультипликативный тренд и сезонность.
- Модель Тейла-Вейджа — аддитивный тренд и сезонность.
- Анализ адекватности адаптивных моделей, скользящий контрольный сигнал.
- Адаптация параметров адаптации. Модель Тригга-Лича.
- Обнаружение структурных изменений. Критерий Чоу.
- Адаптивная селекция моделей прогнозирования.
- Адаптивная композиция моделей прогнозирования.
Анализ панельных данных
[Магнус]
- Примеры эконометрических задач: анализ стран, фирм, домашних хозяйств, телезрителей.
- Объединённая модель панельных данных.
- Модель панельных данных с фиксированными эффектами.
- Модель панельных данных со случайными эффектами.
- Модель панельных данных с временны́ми эффектами.
- Модель несвязанных регрессий.
- Проблема выбора модели: F-тест Фишера, критерий множителей Лагранжа, критерий Хаусмана.
- Ротационная панель.
Выборочный анализ
- Задачи выборочного анализа. Простой случайный выбор. Приложения в социологии, маркетинге [Лапач, 312, Орлов].
- Пропорциональный выбор и преимущества стратификации. Оценки достаточной длины выборки [Лапач, 361]. Другие методы выбора: квотированный, кластерный, многоступенчатый кластерный.
- Выборочный контроль качества [Лапач, 351]. Одноступенчатый и двухступенчатый план контроля. Оперативная характеристика плана контроля. Парадоксы выборочного контроля.
Литература
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
- Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс: Учеб. — 7-е изд., испр. — М.: Дело, 2005.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Орлов А. И. Эконометрика. — М.: Экзамен, 2003.
- Айвазян С. А., Мхитарян В. С. Прикладная статистика. Том 1. Теория вероятностей и прикладная статистика. — М.: Юнити, 2001.
- Айвазян С. А. Прикладная статистика. Том 2. Основы эконометрики. — М.: Юнити, 2001.
- Кулаичев А. П. Методы и средства комплексного анализа данных. — М.: Форум–Инфра-М, 2006.
- Тюрин Ю. Н., Макаров А. А. Анализ данных на компьютере. — М.: Инфра-М, 2003.
- Вучков И., Бояджиева А., Солаков Е. Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987.
- Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning, 2nd edition. — Springer, 2009. — 533 p. (подробнее)
Ссылки
- Википедия: Проверка статистических гипотез
- Википедия: Статистический критерий
- Статистический Портал StatSoft
- Электронный статистический словарь StatSoft