Аппроксимация Лапласа (пример)
Материал из MachineLearning.
(→Пример 1) |
(→Постановка задачи) |
||
Строка 9: | Строка 9: | ||
Задана выборка — множество <tex>X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\}</tex> значений свободных переменных и множество <tex>\{y_1,\ldots, y_N| y\in\R\}</tex> соответствующих им значений зависимой переменной. | Задана выборка — множество <tex>X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\}</tex> значений свободных переменных и множество <tex>\{y_1,\ldots, y_N| y\in\R\}</tex> соответствующих им значений зависимой переменной. | ||
- | Необходимо для выбранной регрессионной модели <tex>f(\mathbf{w},\mathbf{x})</tex>показать зависимость среднеквадратичной ошибки от значений параметров модели: <tex>SSE=SSE(w)</tex>; построить график и сделать апроксимацию Лапласа для него; найти расстояния между | + | Необходимо для выбранной регрессионной модели <tex>f(\mathbf{w},\mathbf{x})</tex>показать зависимость среднеквадратичной ошибки от значений параметров модели: <tex>SSE=SSE(w)</tex>; построить график и сделать апроксимацию Лапласа для него; найти расстояния между получеными зависимостями, используя метрику Кульбака - Лейблера. |
==Описание алгоритма== | ==Описание алгоритма== |
Версия 19:57, 16 ноября 2010
Аппроксимация Лапласа - простой, но широко используемый способ нахождения нормального (Гауссово) распределения для апроксимации заданой плотности вероятности.
Содержание[убрать] |
Сэмплирование
Сэмплирование – процесс выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа.
Одно из основных приминений методов сэмплирования заключается в оценке мат. ожидания сложных вероятностных распределений: , для которых тяжело делать выборку непосредственно из распределения p(z). Однако, можно подсчитать значение p(z) в любой точке z. Один из наиболее простых методов подсчета мат. ожидаия – разбить ось z на равномерную сетку и подсчитать интеграл как сумму
≅
. Существует несколько методов сэмплирования для создания подходящей выборки длинны L ???.
Постановка задачи
Задана выборка — множество значений свободных переменных и множество
соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели
показать зависимость среднеквадратичной ошибки от значений параметров модели:
; построить график и сделать апроксимацию Лапласа для него; найти расстояния между получеными зависимостями, используя метрику Кульбака - Лейблера.
Описание алгоритма
метрика Кульбака - Лейблера:
Вычислительный эксперимент
Обозначим плоность распределения SSE как , а его апроксимация лапласса
Пример 1
Задуманная функция . Берем линейную регрессионную модель с 2-мя параметрами:
.
Используя МНК находим оптимальное значение
и
(при которых SSE минимально).
При фиксированном задем произвольное значение
(500 значений на отрезке [-1;2]) и строим зависимость:
Повторим эксперимент, только теперь варируем сразу оба параметра и
апроксимация лапласса
На рис.2 наблюдается зависимость между коэффициентами и
. Следовательно, ковариационная матрица cov(w_1,w_2) не будет диагональной.