Вероятностные языковые модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Лекция 4, план лекции 5)
(изменено название курса, первая лекция)
 
(316 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Развивается многокритериальный подход к решению некорректно поставленной задачи стохастического матричного разложения — [[аддитивная регуляризация тематических моделей]]. Рассматриваются свойства интерпретируемости, устойчивости и полноты тематических моделей, а также способы их измерения. Рассматриваются прикладные задачи классификации и категоризации текстов, информационного поиска, персонализации и рекомендательных систем. Рассматриваются задачи анализа и классификации символьных последовательностей неязыковой природы, в частности, аминокислотных и нуклеотидных последовательностей, дискретизированных биомедицинских сигналов. Предполагается проведение студентами численных экспериментов на модельных и реальных данных.
+
До 2026 года курс назывался «Вероятностные тематические модели».
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
+
Вероятностные языковые модели (probabilistic language model) выявляют закономерности в строении текста, чтобы предсказывать появление каждого следующего слова. Чем лучше модель понимает строение языка, тем точнее предсказания слов, тем более она полезна в задачах анализа текстов, информационного поиска (IR, Information Retrieval), обработки естественного языка (NLP, Natural Language Processing), понимания естественного языка (NLU, Natural Language Understanding).
-
Условием сдачи спецкурса является выполнение индивидуальных практических заданий.
+
Наиболее подробно в курсе изучается вероятностное [[тематическое моделирование]] (Probabilistic Topic Modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, создавать системы семантического разведочного поиска (Exploratory Search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. Развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] ([[ARTM]]). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
== Программа курса 2016 ==
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Желательно знание курсов математической статистики, методов оптимизации, машинного обучения, языка программирования Python.
-
* Файл с описанием заданий: [[Media:voron-2016-task-PTM.pdf|voron-2016-task-PTM.pdf]]
+
-
=== Введение ===
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
Презентация: [[Media:Voron-PTM-1.pdf|(PDF, 0,6 МБ)]] {{важно|— обновление 27.02.2016}}.
+
-
* Понятие «темы», цели и задачи тематического моделирования. Основные предположения. Гипотеза «мешка слов». Методы предварительной обработки текстов.
+
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. [[Порождающая модель]] документа как вероятностной смеси тем.
+
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
* [[Вероятностный латентный семантический анализ]] (PLSA).
+
-
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]], [[Условия Каруша–Куна–Таккера]]. Униграммные модели коллекции и документа.
+
-
* Теорема о необходимых условиях максимума правдоподобия для модели PLSA.
+
-
* ЕМ-алгоритм и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
+
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
-
=== Обзор задач и моделей ===
+
'''Основной материал:'''
-
Презентация: [[Media:Voron-PTM-2.pdf|(PDF, 8,3 МБ)]] {{важно|— обновление 27.02.2016}}.
+
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2025}}.
-
* Разновидности тематических моделей.
+
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYFeH50yAki9uSrk7PrjBUoL Плейлист видеозаписей, 2025 осень (МФТИ)].
-
* Средства визуализации тематических моделей.
+
-
* Разведочный информационный поиск и требования к тематическим моделям.
+
-
* Задача поиска релевантных тем в социальных сетях.
+
-
* Применение тематического моделирования для [[Технология информационного анализа электрокардиосигналов|информационного анализа электрокардиосигналов]].
+
-
* Динамическая модель коллекции пресс-релизов.
+
-
* Проект [[BigARTM]].
+
-
* Открытые проблемы и направления исследований.
+
-
=== Модель латентного размещения Дирихле ===
+
= Программа курса =
-
Презентация: [[Media:Voron-PTM-3.pdf|(PDF, 1,9 МБ)]] {{важно|— обновление 04.03.2016}}.
+
-
* Задача тематического моделирования как некорректно поставленная задача стохастического матричного разложения.
+
-
* [[Латентное размещение Дирихле]] (LDA). Некоторые свойства [[Распределение Дирихле|распределения Дирихле]].
+
-
* Теорема о необходимом условии максимума апостериорной вероятности для LDA.
+
-
* Сравнение EM-алгоритма для LDA и PLSA.
+
-
* Алгоритм сэмплирования Гиббса.
+
-
* Модель SWB с фоном и шумом. Робастная тематическая модель.
+
-
* Модель LDA не снижает переобучение, а лишь точнее описывает вероятности редких слов.
+
-
* Способы измерения расстояния между дискретными распределениями. [[Дивергенция Кульбака-Лейблера]].
+
-
* Эксперименты на синтетических данных: демонстрация неустойчивости PLSA и LDA.
+
-
* Эксперименты по неустойчивости LDA на текстовых коллекциях социальных сетей.
+
-
=== Аддитивная регуляризация тематических моделей ===
+
== Обзор вероятностных моделей языка ==
-
Презентация: [[Media:Voron-PTM-4.pdf|(PDF, 1,2 МБ)]] {{важно|— обновление 6.03.2016}}.
+
'''Частотные модели.'''
-
* [[Аддитивная регуляризация тематических моделей]]. Линейные композиции регуляризаторов.
+
* Текстовые данные. Гипотеза «мешка слов». Принцип максимума правдоподобия.
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
+
* Условия Каруша–Куна–Таккера. Частотные оценки вероятности слова в текстовой коллекции, в текстовом документе.
-
* Онлайновый регуляризованный EM-алгоритм. Разделение коллекции на пачки документов.
+
* Токенизация; n-граммы, коллокации, словосочетания, термины. Алгоритм TopMine.
-
* Регуляризаторы сглаживания и разреживания. Частичное обучение как разновидность сглаживания.
+
* Перплексия.
-
* Разделение тем на предметные и фоновые. Автоматическое выделение стоп-слов.
+
* Эмпирические законы Ципфа и Хипса.
-
* Регуляризатор декоррелирования тем.
+
* Модели релевантности текста TF-IDF, BM-25, PageRank, TextRank.
-
* Регуляризатор отбора тем. Эффект отбрасывания малых, дублирующих и линейно зависимых тем. Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
+
-
* Критерии качества тематических моделей: перплексия, когерентность, чистота и контрастность тем. Эксперименты с композициями разреживания, сглаживания, декоррелирования и отбора тем.
+
-
=== Мультимодальные тематические модели ===
+
'''Модели семантических векторных представлений.'''
-
Презентация: [[Media:Voron-PTM-5.pdf|(PDF, Х,Х МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
+
* Вероятностное тематическое моделирование.
-
* Виды модальностей и примеры прикладных задач.
+
* Дистрибутивная семантика. Модель word2vec. Модель FastText.
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для мультимодальной ARTM.
+
-
* Тематическая модель классификации. Пример: [[Технология информационного анализа электрокардиосигналов]].
+
-
* Мультиязычные тематические модели. Параллельные и сравнимые коллекции. Регуляризаторы для учёта двуязычных словарей.
+
-
* Модели многоматричных разложений. Понятие порождающей модальности.
+
-
* Автор-тематическая модель (author-topic model).
+
-
* Тематическая модель текста и изображений. Задача аннотирования изображений.
+
-
* Модель для выделения поведений объектов в видеопотоке.
+
-
* Гиперграфовая модель. Примеры транзакционных данных в социальных и рекламных сетях.
+
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для гиперграфовой ARTM.
+
-
<!---
+
'''Нейросетевые модели языка.'''
-
'''Способы формирования начальных приближений.'''
+
* Нейрон и нейронные сети.
-
* Случайная инициализация.
+
* Модель машинного перевода. Модель внимания. Архитектура трансформера. Кодировщик и декодировщик.
-
* Инициализация по документам.
+
* Критерии обучения в машинном переводе.
-
* Контекстная документная кластеризация.
+
* Критерий маскированного языкового моделирования для обучения кодировщика. Модель BERT.
-
* Поиск якорных слов. Алгоритм Ароры.
+
-
'''Ковариационные регуляризаторы.'''
+
== Задача тематического моделирования ==
-
* Дековариация тем.
+
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 11.09.2025}}.
-
* Тематические модели цитирования.
+
[https://youtu.be/Xit8NqCvdyA?t=74 видеозапись]
-
* Задача выявления корреляций между темами, модель CTM.
+
-
* Оценивание параметров (матрицы ковариаций) в модели CTM.
+
-
'''Регуляризаторы для классификации и регрессии.'''
+
'''Цели и задачи тематического моделирования.'''
-
* Задачи регрессии на текстах. Примеры. Регуляризатор. Формула М-шага.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Задачи классификации текстов. Примеры. Регуляризатор. Формула М-шага.
+
* Вероятностная модель порождения текста.
 +
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
===Оценивание качества тематических моделей===
+
'''Аддитивная регуляризация тематических моделей.'''
-
* Внутренние и внешние критерии качества.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
''' Перплексия и правдоподобие. '''
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
* Интерпретация перплекcии.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
* Проблема сравнения моделей с разными словарями. Относительная перплексия.
+
-
''' Оценивание качества темы.'''
+
-
* Лексическое ядро темы: множество типичных терминов темы.
+
-
* Чистота и контрастность темы
+
-
* Документное ядро темы: множество типичных документов темы.
+
-
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
+
-
* Конфликтность темы: близость темы к другим темам.
+
-
'''Статистические тесты условной независимости.'''
+
'''Практика тематического моделирования.'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
+
* Проект с открытым кодом BigARTM.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Этапы решения практических задач.
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Методы предварительной обработки текста.
-
* Обобщённое семейство статистик Кресси-Рида.
+
* Датасеты и практические задания по курсу.
-
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
+
-
* Применения теста условной независимости для поиска плохо смоделированных тем и документов, терминов. Поиск тем для расщепления.
+
-
'''Оценивание интерпретируемости тем.'''
+
== Моделирование локального контекста ==
-
* Экспертное оценивание интерпретируемости.
+
Презентация: [[Media:Voron25ptm-local.pdf|(PDF,&nbsp;3,2&nbsp;МБ)]] {{важно|— обновление 14.09.2025}}.
-
* Асессорская разметка терминов и документов, релевантных теме.
+
[https://youtu.be/Zl0VMJ_A9J0 видеозапись]
-
* Метод интрузий.
+
-
* Радикальное улучшение интерпретируемости в n-граммных тематических моделях.
+
-
'''Когерентность.'''
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Определение когерентности.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* Онлайновый EM-алгоритм для ARTM.
-
* Способы оценивания совместной встречаемости слов.
+
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
'''Критерии качества классификации и ранжирования.'''
+
'''Линейная тематизация текста.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Двунаправленная тематическая модель контекста.
 +
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
 +
'''Аналогия с нейросетевыми моделями языка.'''
 +
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
 +
* Модель само-внимания (self-attention) Query-Key-Value.
 +
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
 +
* Нейросетевая тематическая модель Contextual-Top2Vec.
 +
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
 +
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
 +
[https://youtu.be/5DXhffGMjBM видеозапись]
-
'''Суммаризация темы.'''
+
'''Часто используемые регуляризаторы.'''
-
* Проблема визуализации тем.
+
* Сглаживание и разреживание.
-
* Выделение тематичных слов и предложений.
+
* Частичное обучение.
-
* Кластеризация тематичных предложений.
+
* Декоррелирование тем.
-
* Ранжирование тематичных предложений.
+
* Разреживание для отбора тем.
-
* Асессорская разметка предложений, релевантных теме.
+
-
* Задача автоматического именования темы.
+
-
--->
+
-
== Программа курса 2015 ==
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
-
* Файл с описанием заданий: [[Media:voron-2014-task-PTM.pdf|voron-2015-task-PTM.pdf]]
+
* Улучшение сходимости несмещёнными оценками.
 +
* Замена логарифма в функции потерь.
 +
* Матричная запись ЕМ-алгоритма.
 +
* Подбор коэффициентов регуляризации. Траектория регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
=== Задачи анализа текстов и вероятностные модели ===
+
'''Эксперименты с регуляризацией.'''
 +
* Производительность BigARTM
 +
* Оценивание качества: перплексия, когерентность, лексическое ядро
 +
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
* Эксперименты с отбором тем на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
'''Задачи классификации текстов.'''
+
== Оценивание качества тематических моделей ==
-
* Коллекция текстовых документов. Векторное представление документа.
+
Презентация: [[Media:Voron25ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
[https://youtu.be/OoIetK1pTUA видеозапись]
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка.
+
-
* Линейный классификатор. Наивный байесовский классификатор.
+
-
* Задача распознавания языка текста.
+
-
* Задача распознавание жанра текста. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
* Задача анализа тональности.
+
-
'''Задачи предварительной обработки текстов.'''
+
'''Измерение качества тематических моделей.'''
-
* Очистка: удаление номеров страниц (колонтитулов), переносов, опечаток, оглавлений, таблиц, рисунков, нетекстовой информации.
+
* Правдоподобие и перплексия.
-
* Лемматизация и стемминг. Сравнение готовых инструментальных средств.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
-
* Выделение и удаление стоп-слов и редких слов.
+
* Разреженность и различность.
-
'''Задачи информационного поиска.'''
+
'''Проверка гипотезы условной независимости.'''
-
* Задача поиска документов по запросу. Инвертированный индекс.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Меры сходства векторов частот. Косинусная мера сходства. Расстояние Хеллингера.
+
* Регуляризатор семантической однородности.
-
* Дивергенция Кульбака-Леблера и её свойства. Дивергенция Кресси-Рида.
+
* Применение статистических тестов условной независимости.
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
-
'''Униграммная модель документов и коллекции.'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
* Проблема малых тем и тем-дубликатов
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
* Униграммная модель документов и коллекции.
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
-
* ''Ликбез.'' Теорема Куна-Таккера.
+
* Регуляризатор семантической однородности
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
* Подходы к балансировке тем
-
'''Литература:''' [Маннинг 2011].
+
== Тематический информационный поиск ==
 +
Презентация: [[Media:Voron25ptm-exp.pdf|(PDF,&nbsp;9,4&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
 +
[https://youtu.be/lckh814p-7I видеозапись]
-
=== Вероятностный латентный семантический анализ ===
+
'''Мультимодальные тематические модели.'''
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
* Примеры модальностей.
 +
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
'''Мотивации вероятностного тематического моделирования
+
'''Иерархические тематические модели.'''
-
* Идея понижения размерности: переход от вектора (терминов) к вектору тем.
+
* Иерархии тем. Послойное построение иерархии.
-
* Цели тематического моделирования: разведочный поиск научной информации, навигация и систематизация, агрегирование новостных потоков, классификация и категоризация текстов, обход проблем синонимии и омонимии.
+
* Регуляризаторы для разделения тем на подтемы.
 +
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
-
'''Задача тематического моделирования.'''
+
'''Эксперименты с тематическим поиском.'''
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
* Методика измерения качества поиска.
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
 +
<!--
 +
'''Задачи тематизации текстовых коллекций'''
 +
* Проект «Мастерская знаний». Тематизация подборок научных публикаций.
 +
* Поиск этно-релевантных тем в социальных сетях
 +
* Тематизация в социо-гуманитарных исследованиях-->
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
== BigARTM и базовые инструменты ==
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
''Мурат Апишев''.
-
* Элементарная интерпретация ЕМ-алгоритма: Е-шаг как формула Байеса для апостериорной вероятности темы, М-шаг как частотные оценки условных вероятностей.
+
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Предварительная обработка текстов'''
-
* Проблема больших данных.
+
* Парсинг «сырых» данных.
-
* Эвристика разделения М-шага.
+
* Токенизация, стемминг и лемматизация.
-
* Эвристика разделения коллекции на пачки документов.
+
* Выделение энграмм.
-
* Добавление новых документов (folding-in).
+
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
'''Проведение экспериментов на модельных данных.'''
+
'''Библиотека BigARTM'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Методологические рекоммендации по проведению экспериментов.
-
* Распределение Дирихле. Генерация разреженных и сглаженных векторов дискретных распределений из распределения Дирихле.
+
* Установка [[BigARTM]].
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Формат и импорт входных данных.
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
 +
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
'''Задание 1.1'''
+
'''Дополнительный материал:'''
-
Обязательные пункты: 1–3 и любой из последующих.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
# Реализовать рациональный ЕМ-алгоритм.
+
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на устойчивость решения. Построить эмпирические распределения и доверительные интервалы для расстояний Хеллингера между истинными матрицами и восстановленными.
+
-
# Исследовать влияние разреженности матриц Фи и Тета на устойчивость решения.
+
-
# Исследовать полноту решения. Сколько запусков со случайным начальным приближением необходимо сделать, чтобы найти все исходные темы? Как различность и разреженность исходных тем влияет на полноту?
+
-
'''Литература:''' [Hofmann 1999].
+
== Мультимодальные тематические модели ==
 +
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
 +
[https://youtu.be/8cg334LKWdk видеозапись]
-
===Латентное размещение Дирихле===
+
'''Мультиязычные тематические модели.'''
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
* Параллельные и сравнимые коллекции.
 +
* Регуляризаторы для учёта двуязычных словарей.
 +
* Кросс-язычный информационный поиск.
-
'''Латентное размещение Дирихле (LDA)'''
+
'''Трёхматричные модели.'''
-
* Свойства [[Распределение Дирихле|распределения Дирихле]].
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
-
* Принцип максимума апостериорной вероятности. Модифицированные формулы М-шага.
+
* Автор-тематическая модель (author-topic model).
-
* [[Байесовский вывод]]. Свойство сопряжённости мультиномиального распределения и распределения Дирихле. Другие модифицированные формулы М-шага.
+
* Модель для выделения поведений объектов в видеопотоке.
-
* Обзор модификаций формул М-шага.
+
-
* Методы оптимизации гиперпараметров.
+
-
* Небайесовская интерпретация модели LDA.
+
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Тематические модели транзакционных данных.'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
* Эвристика сэмплирования. Алгоритм сэмплирования Гиббса.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
 +
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
'''Робастные тематические модели.'''
+
== Тематические модели сочетаемости слов ==
-
* Робастная модель с фоном и шумом.
+
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 8.11.2025}}.
-
* Упрощённая робастная модель.
+
[https://youtu.be/0Yy5kH2LlEQ видеозапись]
-
* Почему робастный PLSA лучше, чем LDA. Эффект повышения правдоподобия (перплексии) в робастных моделях с шумом.
+
-
'''Способы формирования начальных приближений.'''
+
'''Мультиграммные модели и выделение терминов.'''
-
* Случайная инициализация.
+
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
-
* Инициализация по документам.
+
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
-
* Контекстная документная кластеризация.
+
* Критерии тематичности фраз.
-
* Поиск якорных слов. Алгоритм Ароры.
+
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
'''Задание 1.2'''
+
'''Тематические модели дистрибутивной семантики.'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
-
# Реализовать онлайновый алгоритм OEM.
+
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
-
# Исследовать возможность улучшения качества модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
<!--* Регуляризаторы когерентности. -->
-
# Исследовать влияние гиперпараметров на правдоподобие модели и точность восстановления.
+
-
'''Литература:''' [Hoffman 2010], [Asuncion 2009].
+
'''Позиционный регуляризатор в ARTM.'''
 +
* Гипотеза о сегментной структуре текста.
 +
* Регуляризация матрицы тематических векторов термов. Формулы М-шага.
 +
* Теорема о регуляризаторе, эквивалентном произвольной пост-обработке Е-шага.
 +
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
===Аддитивная регуляризация тематических моделей===
+
'''Дополнительный материал:'''
-
* ''Напоминания''. Вероятностная тематическая модель. Принцип максимума правдоподобия. PLSA. EM-алгоритм.
+
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
'''Многокритериальная регуляризация.'''
+
== Анализ зависимостей ==
-
* Некорректность постановки задачи тематического моделирования.
+
Презентация: [[Media:Voron25ptm-rel.pdf|(PDF,&nbsp;2,6&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
-
* [[Аддитивная регуляризация тематических моделей]].
+
[https://youtu.be/s8Fp62lWHqk видеозапись]
-
* Вывод формулы M-шага для регуляризованного ЕМ-алгоритма.
+
-
* Проект [[BigARTM]].
+
-
'''Регуляризаторы сглаживания и разреживания.'''
+
'''Зависимости, корреляции, связи.'''
-
* Максимизация и минимизация KL-дивергенции.
+
* Тематические модели классификации и регрессии.
-
* Альтернативный вариант разреживания через L0-регуляризацию.
+
* Модель коррелированных тем CTM (Correlated Topic Model).
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
* Разреживание предметных тем и сглаживание фоновых тем. Автоматическое выделение стоп-слов.
+
-
'''Регуляризаторы частичного обучения.'''
+
'''Время и пространство.'''
-
* Частичное обучение как выборочное сглаживание.
+
* Регуляризаторы времени.
-
* Сфокусированные тематические модели. Использование словаря для выделения предметных тем.
+
* Обнаружение и отслеживание тем.
-
* Пример: выделение тематики эпидемий, этнических конфликтов.
+
* Гео-пространственные модели.
-
'''Ковариационные регуляризаторы.'''
+
'''Социальные сети.'''
-
* Дековариация тем.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
-
* Тематические модели цитирования.
+
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
-
* Задача выявления корреляций между темами, модель CTM.
+
* Регуляризаторы для выявления социальных ролей пользователей.
-
* Оценивание параметров (матрицы ковариаций) в модели CTM.
+
-
'''Регуляризаторы для классификации и регрессии.'''
+
== Проект «Тематизатор» ==
-
* Задачи регрессии на текстах. Примеры. Регуляризатор. Формула М-шага.
+
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;8,3&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
-
* Задачи классификации текстов. Примеры. Регуляризатор. Формула М-шага.
+
[https://youtu.be/0BEIkS3OZZY Видеозапись]
-
'''Задание 1.3'''
+
'''Примеры прикладных задач'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Поиск этно-релевантных тем в социальных сетях.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Анализ программ развития российских вузов.
-
# Исследовать зависимость правдоподобия модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Поиск и рубрикация научных статей на 100 языках.
-
# Исследовать влияние разреживания на правдоподобие модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на правдоподобие модели.
+
* Тематическое моделирование в исторических и политологических исследованиях.
-
# Исследовать влияние частичной разметки на правдоподобие модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения правдоподобия и устойчивости модели.
+
* Проекты Школы Прикладного Анализа Данных.
-
# Исследовать влияние сглаживания на правдоподобие модели и точность восстановления.
+
-
'''Литература:''' [Воронцов, 2013, 2015], [Chemudugunta, 2006].
+
'''Визуализация тематических моделей'''
 +
* Визуализация матричного разложения.
 +
* Динамика, иерархии, взаимосвязи, сегментация.
 +
* Спектр тем.
-
===Оценивание качества тематических моделей===
+
'''Анализ требований к «Тематизатору»'''
 +
* Функциональные требования.
 +
* Требования к интерпретируемости.
 +
* Основной пользовательский сценарий: загрузка, предобработка, моделирование, визуализация, коррекция.
 +
* Задача перестроения модели по экспертной разметке тем на релевантные, нерелевантные и мусорные
 +
* Этапизация работ и MVP Тематизатора.
-
'''Реальные данные.'''
+
== Именование и суммаризация тем ==
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;4,6&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
-
* Внутренние и внешние критерии качества.
+
[https://youtu.be/d87zESF20K8 видеозапись]
-
* Дополнительные данные для построения внешних критериев качества.
+
-
'''Перплексия и правдоподобие.'''
+
'''Методы суммаризации текстов.'''
-
* Определение и интерпретация перплекcии.
+
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
-
* Проблема сравнения моделей с разными словарями.
+
* Тематическая модель предложений для суммаризации.
-
* Относительная перплексия.
+
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
''' Оценивание качества темы.'''
+
'''Автоматическое именование тем (topic labeling).'''
-
* Лексическое ядро темы: множество типичных терминов темы.
+
* Формирование названий-кандидатов.
-
* Чистота и контрастность темы
+
* Релевантность, покрытие, различность.
-
* Документное ядро темы: множество типичных документов темы.
+
* Оценивание качества именования тем.
-
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
+
-
* Конфликтность темы: близость темы к другим темам.
+
-
'''Статистические тесты условной независимости.'''
+
'''Задача суммаризации темы'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
+
* Задача ранжирования документов
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Задача фильтрации репрезентативных релевантных фраз.
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Задача генерации связного текста
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
+
-
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
+
-
'''Литература:''' [Newman, 2009–2011].
+
== Байесовское обучение модели LDA ==
 +
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 7.12.2025}}.
 +
[https://youtu.be/Je8o6-qgb7Q видеозапись]
-
===Внешние оценки качества тематических моделей===
+
'''Классические модели PLSA, LDA.'''
 +
* Модель PLSA.
 +
* Модель LDA. Распределение Дирихле и его свойства.
 +
* Максимизация апостериорной вероятности для модели LDA.
-
'''Оценивание интерпретируемости тем.'''
+
'''Вариационный байесовский вывод.'''
-
* Экспертное оценивание интерпретируемости.
+
* Основная теорема вариационного байесовского вывода.
-
* Асессорская разметка терминов и документов, релевантных теме.
+
* [[Вариационный байесовский вывод]] для модели LDA.
-
* Метод интрузий.
+
* VB ЕМ-алгоритм для модели LDA.
-
* Радикальное улучшение интерпретируемости в n-граммных тематических моделях.
+
-
'''Когерентность.'''
+
'''Сэмплирование Гиббса.'''
-
* Определение когерентности.
+
* Основная теорема о сэмплировании Гиббса.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Способы оценивания совместной встречаемости слов.
+
* GS ЕМ-алгоритм для модели LDA.
-
'''Суммаризация темы.'''
+
'''Замечания о байесовском подходе.'''
-
* Проблема визуализации тем.
+
* Оптимизация гиперпараметров в LDA.
-
* Выделение тематичных слов и предложений.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
-
* Кластеризация тематичных предложений.
+
* Сравнение байесовского подхода и ARTM.
-
* Ранжирование тематичных предложений.
+
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
-
* Асессорская разметка предложений, релевантных теме.
+
-
* Задача автоматического именования темы.
+
-
'''Критерии качества классификации и ранжирования.'''
+
== Проект «Мастерская знаний» ==
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|— обновление 3.03.2025}}.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
-
'''Задание 1.4.'''
+
'''Проект «Мастерская знаний»'''
-
# Применить OEM к реальным коллекциям.
+
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
* Модель векторизации текста для поиска и рекомендаций научных статей.
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
* Основные сервисы «Мастерской знаний».
-
'''Литература:'''
+
'''Место тематического моделирования в «Мастерской знаний»'''
 +
* Сервис тематизации подборки.
 +
* Сервисы выявления научных трендов и построения хронологических карт.
 +
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
-
===Мультимодальные регуляризованные тематические модели===
+
'''Карты знаний'''
-
* ''Напоминания''. Аддитивная регуляризация тематических моделей.
+
* Задачи иерархической суммаризации одной статьи, подборки статей.
 +
* Принципы построения интеллект-карт и карт знаний.
 +
* Что такое «тема»? Отличия тематизации и картирования.
-
'''Мультимодальная АРТМ.'''
+
<!---
-
* Виды модальностей и примеры прикладных задач.
+
== Теория ЕМ-алгоритма ==
-
* Вывод формул М-шага.
+
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 25.10.2024}}.
-
* Тематическая модель классификации. Пример: [[Технология информационного анализа электрокардиосигналов]].
+
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Тематическая модель текста и изображений.
+
-
* Задача аннотирования изображений.
+
-
'''Мультиязычные тематические модели.'''
+
'''Общий EM-алгоритм.'''
-
* Параллельные и сравнимые коллекции.
+
* EM-алгоритм для максимизации неполного правдоподобия.
-
* Регуляризаторы для учёта двуязычных словарей.
+
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
 +
* Альтернативный вывод формул ARTM.
-
'''Модели многоматричных разложений.'''
+
'''Эксперименты с моделями PLSA, LDA.'''
-
* Понятие порождающей модальности.
+
* Проблема неустойчивости (на синтетических данных).
-
* Вывод формул М-шага.
+
* Проблема неустойчивости (на реальных данных).
-
* Автор-тематическая модель (author-topic model).
+
* Проблема переобучения и робастные модели.
-
* Модель для выделения поведений объектов в видеопотоке.
+
-
'''Гиперграфовая модель.'''
+
== Моделирование сегментированного текста ==
-
* Примеры транзакционных данных в социальных и рекламных сетях.
+
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
-
* Вывод формул М-шага.
+
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
'''Литература:'''
+
'''Мультиграммные модели.'''
 +
* Модель BigramTM.
 +
* Модель Topical N-grams (TNG).
 +
* Мультимодальная мультиграммная модель.
-
===Определение числа тем и иерархические модели===
+
'''Тематические модели предложений.'''
 +
* Тематическая модель предложений senLDA.
 +
* Модель коротких сообщений Twitter-LDA.
 +
* Сегментоиды. Лексические цепочки.
-
'''Регуляризатор энтропийного разреживания.'''
+
'''Тематическая сегментация текста.'''
-
* Регуляризатор и формула М-шага. Эффект строкового разреживания.
+
* Метод TopicTiling. Критерии определения границ сегментов.
-
* Определение истинного числа тем в экспериментах с полумодельными данными.
+
* Критерии качества сегментации.
-
* Гипотеза о несуществовании истинного числа тем.
+
* Оптимизация параметров модели TopicTiling.
-
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
+
--->
-
* Сравнение с моделью иерархических процессов Дирихле.
+
-
'''Тематическая модель с фиксированной иерархией.'''
+
=Отчетность по курсу=
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
Условием сдачи курса является выполнение индивидуальных практических заданий.
-
* Необходимость частичного обучения для задачи категоризации.
+
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
-
* Задача построения разреженного иерархического тематического профиля документа.
+
-
'''Послойное нисходящее построение тематической иерархии.'''
+
'''Рекомендуемая структура отчёта об исследовании:'''
-
* Регуляризатор матрицы Фи.
+
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
-
* Регуляризатор матрицы Тета.
+
* Описание простого решения baseline
-
* Измерение и оптимизация качества иерархических моделей.
+
* Описание основного решения и его вариантов
-
* Разреживание вероятностного отношения тема—подтема.
+
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
-
'''Одновременное построение всех слоёв тематической иерархии.'''
+
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
-
'''Литература:''' .
+
=Литература=
-
===Тематические модели, учитывающие порядок слов===
+
# ''Воронцов К. В.'' [https://urss.ru/cgi-bin/db.pl?page=Book&id=305674 Вероятностное тематическое моделирование: Теория регуляризации ARTM и библиотека с открытым кодом BigARTM]. Москва, URSS. 2025. ISBN 978-5-9710-9933-8.
 +
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
 +
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
 +
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
-
'''Мультиграммные модели.'''
+
'''Дополнительная литература'''
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
-
* Морфологический и синтаксический анализ текста.
+
-
* Отбор фраз с подчинительными связями.
+
-
* Отбор фраз по статистическому критерию коллокации C-Value. Совмещение критериев TF-IDF и CValue.
+
-
* Отбор фраз по оценке тематичности.
+
-
* Задача сокращения словаря (vocabulary reduction) и проблема сравнения моделей с разными словарями.
+
-
'''Регуляризаторы для выделения энграмм.'''
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
-
* Биграммная тематическая модель.
+
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
 +
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
 +
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
 +
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
 +
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
 +
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
 +
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
 +
-->
-
'''Сегментирующие тематические модели.'''
+
= Ссылки =
-
* Позиционный регуляризатор, вывод формул М-шага.
+
* [[Тематическое моделирование]]
-
* Пост-обработка Е-шага.
+
* [[Аддитивная регуляризация тематических моделей]]
-
* Интерпретация текста как пучка временных рядов и задача разладки.
+
* [[Коллекции документов для тематического моделирования]]
-
* Алгоритм тематической сегментации.
+
* [[BigARTM]]
-
* Тематические модели предложений (sentence topic model).
+
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
-
'''Векторная модель word2vec.'''
+
'''Материалы для первого ознакомления:'''
-
* Векторная модель word2vec и её интерпретация как латентной модели с матричным разложением.
+
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
-
* Гибрид тематической модели и векторной модели word2vec.
+
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
-
* Связь word2vec с регуляризатором когерентности.
+
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
-
* Эксперименты с гибридной моделью W2V-TM.
+
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
-
'''Литература:''' .
+
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
-
===Динамические и пространственные тематические модели===
+
[[Категория:Учебные курсы]]
-
'''Тематические модели с модальностью времени.'''
 
-
* Регуляризатор разреживания тем в каждый момент времени.
 
-
* Регуляризаторы сглаживания темы как временного ряда.
 
-
* Вывод M-шага для негладкого регуляризатора.
 
-
'''Тематические модели с модальностью геолокации.'''
+
<!---------------------------------------------------
-
* Тематические модели социальных сетей.
+
-
===Траектории регуляризации===
+
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
-
'''Обучение с подкреплением'''
+
'''Инициализация.'''
-
* Контекстный многорукий бандит.
+
* Случайная инициализация. Инициализация по документам.
-
* Инкрементная регрессия.
+
* Контекстная документная кластеризация.
-
* Регрессия с верхними доверительными границами (UCB).
+
* Поиск якорных слов. Алгоритм Ароры.
-
'''Задача оптимизации трактории в пространстве коэффициентов регуляризации'''
+
'''Расширяемые тематические модели.'''
-
* Относительные коэффициенты регуляризации.
+
* Пакетный ЕМ-алгоритм.
-
* Признаковое описание контекста. Метрики качества тематической модели.
+
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
-
* Функция премии и скаляризация критериев.
+
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
-
* Особенности реализации обучения с подкреплением в онлайновом ЕМ-алгоритме.
+
-
===Визуализация тематических моделей===
+
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
-
'''Навигация по тематической модели.'''
+
== Примеры приложений тематического моделирования ==
-
* Визуализатор TMVE.
+
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
-
* Визуализатор Termite.
+
-
* Визуализатор для [[BigARTM]].
+
-
'''Методы визуализации.'''
+
'''Примеры приложений тематического моделирования.'''
-
* Задача и методы многомерного шкалирования.
+
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
-
* Визуализация «дорожной карты» темы или набора тем.
+
* Динамическая модель коллекции пресс-релизов.
-
* Визуализация тематических иерархий.
+
* Разведочный поиск в коллективном блоге.
-
* Визуализация динамических моделей, метафора «реки тем».
+
* Сценарный анализ записей разговоров контактного центра.
-
* Визуализация тематической структуры документа.
+
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
-
* Визуализация модели трёх источников.
+
-
'''Средства разведочного поиска.'''
+
== Инициализация, траектория регуляризации, тесты адекватности ==
-
* Концепция пользовательского интерфейса для разведочного поиска.
+
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
-
* Концепция иерархической суммаризации.
+
-
===Большие данные===
+
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
-
'''Параллельные и распределённые алгоритмы.'''
+
'''Тесты адекватности.'''
-
* Обзор подходов к распараллеливанию онлайнового EМ-алгоритма.
+
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
-
* Распараллеливание онлайнового EМ-алгоритма в [[BigARTM]].
+
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
-
* Распределённое хранение коллекции.
+
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
-
'''Обработка больших коллекций в BigARTM.'''
+
== Обзор оценок качества тематических моделей ==
-
* Особенности предварительной обработки.
+
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
-
* Коллекция Википедии.
+
-
* Коллекция arXiv.org.
+
-
* Коллекция социальной сети VK.
+
-
==Литература==
+
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
-
'''Основная литература'''
+
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
-
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
+
'''Устойчивость и полнота.'''
-
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
+
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
-
# ''Vorontsov K. V., Potapenko A. A.'' [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
+
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
-
'''Дополнительная литература'''
+
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
-
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
+
* Вывод M-шага для негладкого регуляризатора.
-
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
+
* Тематическая модель текста и изображений. Задача аннотирования изображений.
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
-->
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
+
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
-
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
+
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
-
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
+
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
+
-
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
+
-
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
+
-
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
+
-
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
+
-
 
+
-
== Ссылки ==
+
-
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
+
-
* [[Тематическое моделирование]]
+
-
* [[Аддитивная регуляризация тематических моделей]]
+
-
* [[Коллекции документов для тематического моделирования]]
+
-
* [[BigARTM]]
+
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 2.6 МБ]] {{важно|(обновление 16 октября 2013)}}.
+
-
* BigARTM: тематическое моделирование больших текстовых коллекций. [http://www.meetup.com/Moscow-Data-Fest/events/224856462/ Data Fest #1], 12 сентября 2015. '''[[Media:voron-2015-datafest.pdf|(PDF,&nbsp;6.5&nbsp;МБ)]]'''.
+
-
 
+
-
[[Категория:Учебные курсы]]
+

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

До 2026 года курс назывался «Вероятностные тематические модели».

Вероятностные языковые модели (probabilistic language model) выявляют закономерности в строении текста, чтобы предсказывать появление каждого следующего слова. Чем лучше модель понимает строение языка, тем точнее предсказания слов, тем более она полезна в задачах анализа текстов, информационного поиска (IR, Information Retrieval), обработки естественного языка (NLP, Natural Language Processing), понимания естественного языка (NLU, Natural Language Understanding).

Наиболее подробно в курсе изучается вероятностное тематическое моделирование (Probabilistic Topic Modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, создавать системы семантического разведочного поиска (Exploratory Search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. Развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (ARTM). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Желательно знание курсов математической статистики, методов оптимизации, машинного обучения, языка программирования Python.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Обзор вероятностных моделей языка

Частотные модели.

  • Текстовые данные. Гипотеза «мешка слов». Принцип максимума правдоподобия.
  • Условия Каруша–Куна–Таккера. Частотные оценки вероятности слова в текстовой коллекции, в текстовом документе.
  • Токенизация; n-граммы, коллокации, словосочетания, термины. Алгоритм TopMine.
  • Перплексия.
  • Эмпирические законы Ципфа и Хипса.
  • Модели релевантности текста TF-IDF, BM-25, PageRank, TextRank.

Модели семантических векторных представлений.

  • Вероятностное тематическое моделирование.
  • Дистрибутивная семантика. Модель word2vec. Модель FastText.

Нейросетевые модели языка.

  • Нейрон и нейронные сети.
  • Модель машинного перевода. Модель внимания. Архитектура трансформера. Кодировщик и декодировщик.
  • Критерии обучения в машинном переводе.
  • Критерий маскированного языкового моделирования для обучения кодировщика. Модель BERT.

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 2.10.2025. видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 2.10.2025. видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 9,4 МБ) — обновление 21.10.2025. видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Мультимодальные тематические модели

Презентация: (PDF, 1,8 МБ) — обновление 21.10.2025. видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,5 МБ) — обновление 8.11.2025. видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация матрицы тематических векторов термов. Формулы М-шага.
  • Теорема о регуляризаторе, эквивалентном произвольной пост-обработке Е-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Анализ зависимостей

Презентация: (PDF, 2,6 МБ) — обновление 27.11.2025. видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Проект «Тематизатор»

Презентация: (PDF, 8,3 МБ) — обновление 27.11.2025. Видеозапись

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Тематическое моделирование в исторических и политологических исследованиях.
  • Проекты Школы Прикладного Анализа Данных.

Визуализация тематических моделей

  • Визуализация матричного разложения.
  • Динамика, иерархии, взаимосвязи, сегментация.
  • Спектр тем.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: загрузка, предобработка, моделирование, визуализация, коррекция.
  • Задача перестроения модели по экспертной разметке тем на релевантные, нерелевантные и мусорные
  • Этапизация работ и MVP Тематизатора.

Именование и суммаризация тем

Презентация: (PDF, 4,6 МБ) — обновление 27.11.2025. видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Байесовское обучение модели LDA

Презентация: (PDF, 1,7 МБ) — обновление 7.12.2025. видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: Теория регуляризации ARTM и библиотека с открытым кодом BigARTM. Москва, URSS. 2025. ISBN 978-5-9710-9933-8.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024
Личные инструменты