Вероятностные языковые модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Вероятностный латентный семантический анализ)
(изменено название курса, первая лекция)
 
(334 промежуточные версии не показаны)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
До 2026 года курс назывался «Вероятностные тематические модели».
-
Условием сдачи спецкурса является выполнение обязательных практических заданий.
+
Вероятностные языковые модели (probabilistic language model) выявляют закономерности в строении текста, чтобы предсказывать появление каждого следующего слова. Чем лучше модель понимает строение языка, тем точнее предсказания слов, тем более она полезна в задачах анализа текстов, информационного поиска (IR, Information Retrieval), обработки естественного языка (NLP, Natural Language Processing), понимания естественного языка (NLU, Natural Language Understanding).
-
= Программа курса =
+
Наиболее подробно в курсе изучается вероятностное [[тематическое моделирование]] (Probabilistic Topic Modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, создавать системы семантического разведочного поиска (Exploratory Search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. Развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] ([[ARTM]]). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
== Часть 1 ==
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Желательно знание курсов математической статистики, методов оптимизации, машинного обучения, языка программирования Python.
-
=== Задачи анализа текстов. Вероятностные модели коллекций текстов ===
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
 +
 
 +
'''Основной материал:'''
 +
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2025}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYFeH50yAki9uSrk7PrjBUoL Плейлист видеозаписей, 2025 осень (МФТИ)].
 +
 
 +
= Программа курса =
-
'''Задачи классификации текстов.'''
+
== Обзор вероятностных моделей языка ==
-
* Коллекция текстовых документов. Векторное представление документа.
+
'''Частотные модели.'''
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка. Распознавание текстов заданной тематики. Анализ тональности. Частоты слов (терминов) как признаки. Линейный классификатор.
+
* Текстовые данные. Гипотеза «мешка слов». Принцип максимума правдоподобия.
-
* Задача распознавание жанра текстов. Распознавание научных текстов. Примеры признаков.
+
* Условия Каруша–Куна–Таккера. Частотные оценки вероятности слова в текстовой коллекции, в текстовом документе.
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
* Токенизация; n-граммы, коллокации, словосочетания, термины. Алгоритм TopMine.
 +
* Перплексия.
 +
* Эмпирические законы Ципфа и Хипса.
 +
* Модели релевантности текста TF-IDF, BM-25, PageRank, TextRank.
-
'''Задачи предварительной обработки текстов.'''
+
'''Модели семантических векторных представлений.'''
-
* Очистка: удаление номеров страниц, переносов, опечаток, нетекстовой информация, оглавлений, таблиц, рисунков.
+
* Вероятностное тематическое моделирование.
-
* Лемматизация и стемминг.
+
* Дистрибутивная семантика. Модель word2vec. Модель FastText.
-
* Удаление стоп-слов. Удаление редких слов.
+
-
'''Задачи информационного поиска.'''
+
'''Нейросетевые модели языка.'''
-
* Задача поиска документов по запросу. Инвертированный индекс. Косинусная мера сходства.
+
* Нейрон и нейронные сети.
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
* Модель машинного перевода. Модель внимания. Архитектура трансформера. Кодировщик и декодировщик.
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
* Критерии обучения в машинном переводе.
 +
* Критерий маскированного языкового моделирования для обучения кодировщика. Модель BERT.
-
'''Униграммная модель документов и коллекции.'''
+
== Задача тематического моделирования ==
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 11.09.2025}}.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
[https://youtu.be/Xit8NqCvdyA?t=74 видеозапись]
-
* Униграммная модель документов и коллекции. Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
-
'''Литература:''' [Маннинг, 2011].
+
'''Цели и задачи тематического моделирования.'''
 +
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
 +
* Вероятностная модель порождения текста.
 +
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
=== Вероятностный латентный семантический анализ ===
+
'''Аддитивная регуляризация тематических моделей.'''
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
 +
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
 +
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
 +
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
'''Мотивации вероятностного тематического моделирования
+
'''Практика тематического моделирования.'''
-
* Идея перехода от вектора (терминов) к вектору тем.
+
* Проект с открытым кодом BigARTM.
-
* Цели тематического моделирования: поиск научной информации, агрегирование и анализ новостных потоков, формирование сжатых признаковых описаний документов для классификации и категоризации текстовых документов, обход проблем синонимии и омонимии.
+
* Этапы решения практических задач.
 +
* Методы предварительной обработки текста.
 +
* Датасеты и практические задания по курсу.
-
'''Задача тематического моделирования.'''
+
== Моделирование локального контекста ==
-
* Вероятностное пространство. Тема как латентная (скрытая) переменная. Представление темы дискретным распределением на множестве слов.
+
Презентация: [[Media:Voron25ptm-local.pdf|(PDF, 3,2 МБ)]] {{важно|— обновление 14.09.2025}}.
-
* Модель смеси униграмм. Недостаток: каждый документ принадлежит только одной теме.
+
[https://youtu.be/Zl0VMJ_A9J0 видеозапись]
-
* Представление документа дискретным распределением на множестве тем. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Частотные оценки условных вероятностей терминов тем и тем документов. Формула Байеса для апостериорной вероятности темы. Элементарное обоснование ЕМ-алгоритма.
+
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Онлайновый EM-алгоритм для ARTM.
 +
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
'''Проведение экспериментов на модельных данных.'''
+
'''Линейная тематизация текста.'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
* Двунаправленная тематическая модель контекста.
 +
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
-
'''Задание 1.1'''
+
'''Аналогия с нейросетевыми моделями языка.'''
-
Обязательные пункты: 1–3 и любой из последующих.
+
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
* Модель само-внимания (self-attention) Query-Key-Value.
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
-
# Реализовать рациональный ЕМ-алгоритм.
+
* Нейросетевая тематическая модель Contextual-Top2Vec.
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на точность модели и точность восстановления. Построить для них эмпирические распределения и доверительные интервалы. Можно ли утверждать, что EM-алгоритм всегда сходится к одному и тому же решению?
+
-
# Исследовать, когда проблема неустойчивости возникает, когда не возникает.
+
-
'''Задание для 4 курса ФУПМ:''' [[Media:voron-2014-task-PTM.pdf|voron-2014-task-PTM.pdf]]
+
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
 +
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
 +
[https://youtu.be/5DXhffGMjBM видеозапись]
-
'''Литература:''' [Hofmann, 1999].
+
'''Часто используемые регуляризаторы.'''
 +
* Сглаживание и разреживание.
 +
* Частичное обучение.
 +
* Декоррелирование тем.
 +
* Разреживание для отбора тем.
-
===Модификации алгоритма обучения модели PLSA===
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
 +
* Улучшение сходимости несмещёнными оценками.
 +
* Замена логарифма в функции потерь.
 +
* Матричная запись ЕМ-алгоритма.
 +
* Подбор коэффициентов регуляризации. Траектория регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
'''Эксперименты с регуляризацией.'''
 +
* Производительность BigARTM
 +
* Оценивание качества: перплексия, когерентность, лексическое ядро
 +
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
* Эксперименты с отбором тем на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
'''Обобщённый ЕМ-алгоритм (GEM).'''
+
== Оценивание качества тематических моделей ==
-
* Проблема медленной сходимости EM-алгоритма на больших коллекциях. Проблема хранения трёхмерных матриц.
+
Презентация: [[Media:Voron25ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
-
* Эвристика частых обновлений параметров.
+
[https://youtu.be/OoIetK1pTUA видеозапись]
-
* Эвристика замены средних экспоненциальным сглаживанием.
+
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Измерение качества тематических моделей.'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Правдоподобие и перплексия.
-
* Эвристика замены апостериорного распределения его несмещённой оценкой.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
-
* Алгоритм сэмплирования Гиббса.
+
* Разреженность и различность.
-
* Эксперименты по подбору оптимального числа сэмплирований.
+
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Проверка гипотезы условной независимости.'''
-
* Проблема больших данных.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Эвристика разделения М-шага.
+
* Регуляризатор семантической однородности.
-
* Эвристика разделения коллекции на пачки документов.
+
* Применение статистических тестов условной независимости.
-
* Добавление новых документов (folding-in).
+
-
'''Способы формирования начальных приближений.'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Случайная инициализация.
+
* Проблема малых тем и тем-дубликатов
-
* Инициализация по документам.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
 +
* Эксперименты с регуляризаторами отбора тем и декоррелирования
 +
* Регуляризатор семантической однородности
 +
* Подходы к балансировке тем
-
'''Частичное обучение (Semi-supervised EM).'''
+
== Тематический информационный поиск ==
-
* Виды частично размеченных данных: привязка документа к темам, привязка термина к темам, нерелевантность, переранжирование списков терминов тем и тем документов, виртуальные документы.
+
Презентация: [[Media:Voron25ptm-exp.pdf|(PDF,&nbsp;9,4&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
-
* Использование частично размеченных данных для инициализации.
+
[https://youtu.be/lckh814p-7I видеозапись]
-
* Использование частично размеченных данных в качестве поправок на М-шаге ЕМ-алгоритма.
+
-
'''Задание 1.2'''
+
'''Мультимодальные тематические модели.'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Примеры модальностей.
-
# Реализовать онлайновый алгоритм OEM.
+
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
-
# Исследовать возможность улучшения качество модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние частичной разметки на точность модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения точности и устойчивости модели.
+
-
'''Литература:''' [Hoffman, 2010].
+
'''Иерархические тематические модели.'''
 +
* Иерархии тем. Послойное построение иерархии.
 +
* Регуляризаторы для разделения тем на подтемы.
 +
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
-
===Разреживание и сглаживание===
+
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
 +
<!--
 +
'''Задачи тематизации текстовых коллекций'''
 +
* Проект «Мастерская знаний». Тематизация подборок научных публикаций.
 +
* Поиск этно-релевантных тем в социальных сетях
 +
* Тематизация в социо-гуманитарных исследованиях-->
-
'''Разреживание'''
+
== BigARTM и базовые инструменты ==
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
''Мурат Апишев''.
-
* Гипотеза разреженности распределений терминов тем и тем документов.
+
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
-
* Принудительное разреживание в ЕМ-алгоритме. Оценка значимости (salience) параметров, метод [[OBD|Optimal Brain Damage]].
+
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
* Выделение нетематических терминов.
+
-
* Генерация реалистичных модельных данных.
+
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
-
'''Сглаживание'''
+
'''Предварительная обработка текстов'''
-
* Модель латентного размещения Дирихле LDA.
+
* Парсинг «сырых» данных.
-
* Свойства распределения Дирихле, сопряжённость с мультиномиальным распределением.
+
* Токенизация, стемминг и лемматизация.
-
* Байесовский вывод. Сглаженные частотные оценки условных вероятностей.
+
* Выделение энграмм.
-
* Максимизация обоснованности модели. Численные методы оптимизации гиперпараметров.
+
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
* Дилемма разреживания и сглаживания.
+
-
'''Задание 1.3'''
+
'''Библиотека BigARTM'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Методологические рекоммендации по проведению экспериментов.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Установка [[BigARTM]].
-
# Исследовать зависимость точности модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Формат и импорт входных данных.
-
# Исследовать влияние разреживания на точность модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на точность модели.
+
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
-
# Исследовать влияние сглаживания на точность модели и точность восстановления.
+
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
'''Литература:''' [Blei, 2003].
+
'''Дополнительный материал:'''
 +
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
 +
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
 +
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
===Внутренние методы оценивания качества===
+
== Мультимодальные тематические модели ==
 +
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
 +
[https://youtu.be/8cg334LKWdk видеозапись]
-
'''Реальные данные.'''
+
'''Мультиязычные тематические модели.'''
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
* Параллельные и сравнимые коллекции.
-
* Внутренние и внешние критерии качества.
+
* Регуляризаторы для учёта двуязычных словарей.
-
* Дополнительные данные для построения внешних критериев качества.
+
* Кросс-язычный информационный поиск.
-
'''Перплексия и правдоподобие.'''
+
'''Трёхматричные модели.'''
-
* Определение и интерпретация перплекcии.
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Автор-тематическая модель (author-topic model).
 +
* Модель для выделения поведений объектов в видеопотоке.
-
'''Когерентность.'''
+
'''Тематические модели транзакционных данных.'''
-
* Определение когерентности.
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
-
* Способы оценивания совместной встречаемости слов.
+
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
''' Оценивание качества темы.'''
+
== Тематические модели сочетаемости слов ==
-
* Контрастность темы (число типичных документов темы, число типичных терминов темы).
+
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 8.11.2025}}.
-
* Пиковость темы.
+
[https://youtu.be/0Yy5kH2LlEQ видеозапись]
-
* Однородность (радиус) темы.
+
-
* Конфликтность темы (близость темы к другим темам).
+
-
'''Статистические тесты условной независимости.'''
+
'''Мультиграммные модели и выделение терминов.'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона. Матрица кросс-табуляции «термины–документы» для заданной темы.
+
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Критерии тематичности фраз.
-
* Обобщённое семейство статистик Кресси-Рида.
+
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
* Алгоритм вычисления квантилей распределения статистики Кресси-Рида.
+
-
* Рекуррентное вычисление статистики Кресси-Рида.
+
-
'''Литература:''' [Newman, 2009–2011].
+
'''Тематические модели дистрибутивной семантики.'''
 +
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
 +
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
 +
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
 +
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
 +
<!--* Регуляризаторы когерентности. -->
-
===Внешние методы оценивания качества===
+
'''Позиционный регуляризатор в ARTM.'''
 +
* Гипотеза о сегментной структуре текста.
 +
* Регуляризация матрицы тематических векторов термов. Формулы М-шага.
 +
* Теорема о регуляризаторе, эквивалентном произвольной пост-обработке Е-шага.
 +
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
'''Оценивание интерпретируемости тематических моделей.'''
+
'''Дополнительный материал:'''
-
* Корректность определения асессорами лишних терминов в темах и лишних тем в документах.
+
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
* Визуализация тематических моделей.
+
-
'''Критерии качества классификации и ранжирования.'''
+
== Анализ зависимостей ==
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
Презентация: [[Media:Voron25ptm-rel.pdf|(PDF,&nbsp;2,6&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
[https://youtu.be/s8Fp62lWHqk видеозапись]
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
-
'''Задание 1.4.'''
+
'''Зависимости, корреляции, связи.'''
-
# Применить OEM к реальным коллекциям.
+
* Тематические модели классификации и регрессии.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
* Модель коррелированных тем CTM (Correlated Topic Model).
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
'''Литература:''' [Blei, 2003].
+
'''Время и пространство.'''
 +
* Регуляризаторы времени.
 +
* Обнаружение и отслеживание тем.
 +
* Гео-пространственные модели.
-
===Робастные тематические модели===
+
'''Социальные сети.'''
-
''Робастность'' — устойчивость модели к нарушениям исходных предпосылок, заложенных в основу модели.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
 +
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
 +
* Регуляризаторы для выявления социальных ролей пользователей.
-
'''Робастная тематическая модель с фоном и шумом'''
+
== Проект «Тематизатор» ==
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;8,3&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
-
* Аддитивный и мультипликативный М-шаг.
+
[https://youtu.be/0BEIkS3OZZY Видеозапись]
-
* Оценки тематичности слов.
+
-
* Эксперименты: робастная модель не нуждается в регуляризации и более устойчива к разреживанию.
+
-
'''Разреженная робастная тематическая модель с шумом'''
+
'''Примеры прикладных задач'''
-
* Максимизация правдоподобия для упрощённой робастной модели.
+
* Поиск этно-релевантных тем в социальных сетях.
-
* Вычисление перплексии для упрощённой робастной модели.
+
* Анализ программ развития российских вузов.
 +
* Поиск и рубрикация научных статей на 100 языках.
 +
* Тематическое моделирование в исторических и политологических исследованиях.
 +
* Проекты Школы Прикладного Анализа Данных.
-
'''Робастная тематическая модель с усечёнными распределениями'''
+
'''Визуализация тематических моделей'''
-
* Явления синонимии, взаимной заменяемости терминов, эффект burstiness.
+
* Визуализация матричного разложения.
-
* Гипотеза об усечённых распределениях терминов тем в документах как ослабление гипотезы условной независимости.
+
* Динамика, иерархии, взаимосвязи, сегментация.
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Модификация ЕМ-алгоритма.
+
* Спектр тем.
-
'''Задание 1.5'''
+
'''Анализ требований к «Тематизатору»'''
-
Обязательные пункты: 1,2 и любой из остальных.
+
* Функциональные требования.
-
# Реализовать генерацию модельных данных с фоном и шумом.
+
* Требования к интерпретируемости.
-
# Реализовать робастный алгоритм OEM.
+
* Основной пользовательский сценарий: загрузка, предобработка, моделирование, визуализация, коррекция.
-
# Исследовать зависимость точности робастной модели и точности восстановления от параметров априорной вероятности фона и шума. Что происходит с точностью модели, когда эти параметры «плохо угаданы»?
+
* Задача перестроения модели по экспертной разметке тем на релевантные, нерелевантные и мусорные
-
# Исследовать возможность оптимизации параметров априорной вероятности шума и фона.
+
* Этапизация работ и MVP Тематизатора.
-
# Исследовать зависимость перплексии и качества поиска от априорной вероятности шума.
+
-
# Исследовать влияние разреживания тематической компоненты робастной модели на перплексию и качество поиска.
+
-
'''Литература:''' [Chemudugunta, 2006].
+
== Именование и суммаризация тем ==
 +
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;4,6&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
 +
[https://youtu.be/d87zESF20K8 видеозапись]
-
== Часть 2 ==
+
'''Методы суммаризации текстов.'''
 +
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
 +
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
===Аддитивная регуляризация тематических моделей===
+
'''Автоматическое именование тем (topic labeling).'''
-
* ''Напоминания''. Вероятностная тематическая модель. Принцип максимума правдоподобия. KL-дивергенция. PLSA. EM-алгоритм.
+
* Формирование названий-кандидатов.
 +
* Релевантность, покрытие, различность.
 +
* Оценивание качества именования тем.
-
'''Тихоновская регуляризация.'''
+
'''Задача суммаризации темы'''
-
* Некорректность постановки задачи тематического моделирования.
+
* Задача ранжирования документов
-
* Аддитивная регуляризация.
+
* Задача фильтрации репрезентативных релевантных фраз.
-
* Общая формула M-шага для регуляризованного ЕМ-алгоритма.
+
* Задача генерации связного текста
-
* Концепция композитных многофункциональных тематических моделей.
+
-
'''Сглаживание и разреживание.'''
+
== Байесовское обучение модели LDA ==
-
* Сглаживание. Альтернативное обоснование LDA через регуляризатор–дивергенцию.
+
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 7.12.2025}}.
-
* Разреживание. Энтропийный регуляризатор.
+
[https://youtu.be/Je8o6-qgb7Q видеозапись]
-
* Частичное обучение как выборочное сглаживание.
+
-
'''Ковариационные регуляризаторы.'''
+
'''Классические модели PLSA, LDA.'''
-
* Антиковариация тем.
+
* Модель PLSA.
-
* Корреляция документов.
+
* Модель LDA. Распределение Дирихле и его свойства.
-
* Тематические модели цитирования.
+
* Максимизация апостериорной вероятности для модели LDA.
-
===Синтаксические тематические модели===
+
'''Вариационный байесовский вывод.'''
 +
* Основная теорема вариационного байесовского вывода.
 +
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
-
'''Энграммные модели.'''
+
'''Сэмплирование Гиббса.'''
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
* Основная теорема о сэмплировании Гиббса.
-
* Морфологический анализ текста.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Синтаксический анализ текста. Выявление подчинительных связей.
+
* GS ЕМ-алгоритм для модели LDA.
-
* Статистические методы поиска коллокаций. Критерий C-Value.
+
-
* Совмещённый статистический критерий TF-IDF & CValue.
+
-
* Энграммный онлайновый алгоритм на основе синтаксического анализа и фильтрации терминов путём разреживания.
+
-
* Влияние выделения ключевых фраз на качество модели и интерпретируемость тем.
+
-
'''Марковские модели синтаксиса.'''
+
'''Замечания о байесовском подходе.'''
-
* Коллокации
+
* Оптимизация гиперпараметров в LDA.
-
* Оценивание матрицы переходных вероятностей.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
 +
* Сравнение байесовского подхода и ARTM.
 +
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
-
===Регуляризация для задач классификации===
+
== Проект «Мастерская знаний» ==
-
* ''Напоминания''. Аддитивная регуляризация тематических моделей.
+
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|— обновление 3.03.2025}}.
-
'''Простейшие модели.'''
+
'''Проект «Мастерская знаний»'''
-
* Примеры классов: годы, авторы, категории, и т.д.
+
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
-
* Моделирование классов темами.
+
* Модель векторизации текста для поиска и рекомендаций научных статей.
-
* Моделирование классов распределениями тем.
+
* Основные сервисы «Мастерской знаний».
-
* Автор-тематическая модель.
+
-
* Многоклассовые задачи. Частотный регуляризатор.
+
-
'''Тематическая модель классификации.'''
+
'''Место тематического моделирования в «Мастерской знаний»'''
-
* Тематическая модель распределения классов документа. Вероятностная интерпретация.
+
* Сервис тематизации подборки.
-
* Тематическая модель цитирования документов.
+
* Сервисы выявления научных трендов и построения хронологических карт.
-
* Тематическая модель цитирования авторов.
+
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
-
* Тематическая модель категоризации. Ковариационный регуляризатор.
+
-
===Динамические тематические модели===
+
'''Карты знаний'''
 +
* Задачи иерархической суммаризации одной статьи, подборки статей.
 +
* Принципы построения интеллект-карт и карт знаний.
 +
* Что такое «тема»? Отличия тематизации и картирования.
-
'''Модели с дискретным временем.'''
+
<!---
-
* Модель с фиксированной тематикой.
+
== Теория ЕМ-алгоритма ==
-
* Модель с медленно меняющейся тематикой.
+
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 25.10.2024}}.
 +
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Модели с непрерывным временем.'''
+
'''Общий EM-алгоритм.'''
 +
* EM-алгоритм для максимизации неполного правдоподобия.
 +
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
 +
* Альтернативный вывод формул ARTM.
-
===Иерархические тематические модели===
+
'''Эксперименты с моделями PLSA, LDA.'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
* Проблема неустойчивости (на синтетических данных).
 +
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
-
'''Тематическая модель с фиксированной иерархией.'''
+
== Моделирование сегментированного текста ==
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
-
* Задача построения иерархического тематического профиля документа.
+
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
* Задача построения одного уровня иерархии. Аналитическое решение задачи максимизации правдоподобия, формулы M-шага.
+
-
* Онлайновый иерархический EM-алгоритм.
+
-
* Необходимость частичного обучения для задачи категоризации.
+
-
* Необходимость разреживания для построения иерархического тематического профиля документа.
+
-
'''Сетевые иерархические модели.'''
+
'''Мультиграммные модели.'''
-
* Возможность для темы иметь несколько родительских тем.
+
* Модель BigramTM.
-
* Дивергенция Кульбака–Лейблера. Свойства KL-дивергенции.
+
* Модель Topical N-grams (TNG).
-
* Интерпретация KL-дивергенции как степени вложенности распределений. Оценивание силы связей «тема-подтема» KL-дивергенцией.
+
* Мультимодальная мультиграммная модель.
-
* Дополнение тематического дерева до тематической сети.
+
-
'''Иерархические процессы Дирихле.'''
+
'''Тематические модели предложений.'''
-
* Оптимизация числа тем в плоской модели.
+
* Тематическая модель предложений senLDA.
-
* Создание новых тем в иерархических моделях.
+
* Модель коротких сообщений Twitter-LDA.
-
* Нисходящие и восходящие иерархические модели.
+
* Сегментоиды. Лексические цепочки.
-
===Многоязычные тематические модели===
+
'''Тематическая сегментация текста.'''
-
* Параллельные тексты.
+
* Метод TopicTiling. Критерии определения границ сегментов.
-
* Сопоставимые тексты.
+
* Критерии качества сегментации.
-
* Регуляризация матрицы переводов слов.
+
* Оптимизация параметров модели TopicTiling.
 +
--->
-
===Многомодальные тематические модели===
+
=Отчетность по курсу=
-
* Коллаборативная фильтрация.
+
Условием сдачи курса является выполнение индивидуальных практических заданий.
-
* Модель научной социальной сети.
+
-
* Персонализация рекламы в Интернете.
+
-
===Распараллеливание алгоритмов обучения тематических моделей===
+
'''Рекомендуемая структура отчёта об исследовании:'''
-
* Основы Map-Reduce
+
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
-
* Распределённое хранение коллекции.
+
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
-
==Литература==
+
'''Примеры отчётов:'''
-
'''Основная литература'''
+
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
=Литература=
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
 
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
+
# ''Воронцов К. В.'' [https://urss.ru/cgi-bin/db.pl?page=Book&id=305674 Вероятностное тематическое моделирование: Теория регуляризации ARTM и библиотека с открытым кодом BigARTM]. Москва, URSS. 2025. ISBN 978-5-9710-9933-8.
 +
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
 +
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
 +
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
'''Дополнительная литература'''
'''Дополнительная литература'''
-
# Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование 2012 Т. 4, №12. С 693–706.
+
 
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. С. 657–686.
 +
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
 +
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
-
# Zavitsanos E., Paliouras G., Vouros G. A. Non-parametric estimation of topic hierarchies from texts with hierarchical Dirichlet processes // Journal of Machine Learning Research. — 2011. — Vol. 12. — Pp. 2749–2775.
+
-->
-
== Ссылки ==
+
= Ссылки =
* [[Тематическое моделирование]]
* [[Тематическое моделирование]]
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 2.6 МБ]] {{важно|(обновление 16 октября 2013)}}.
+
* [[Аддитивная регуляризация тематических моделей]]
-
* Презентация доклада на семинаре в [http://www2.viniti.ru ВИНИТИ РАН], 23 апреля 2013. '''[[Media:voron-viniti-23apr2013.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]]'''.
+
-
 
+
-
== См. также ==
+
* [[Коллекции документов для тематического моделирования]]
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
-
{{Stub}}
+
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
 +
 
 +
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

До 2026 года курс назывался «Вероятностные тематические модели».

Вероятностные языковые модели (probabilistic language model) выявляют закономерности в строении текста, чтобы предсказывать появление каждого следующего слова. Чем лучше модель понимает строение языка, тем точнее предсказания слов, тем более она полезна в задачах анализа текстов, информационного поиска (IR, Information Retrieval), обработки естественного языка (NLP, Natural Language Processing), понимания естественного языка (NLU, Natural Language Understanding).

Наиболее подробно в курсе изучается вероятностное тематическое моделирование (Probabilistic Topic Modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, создавать системы семантического разведочного поиска (Exploratory Search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. Развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (ARTM). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Желательно знание курсов математической статистики, методов оптимизации, машинного обучения, языка программирования Python.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Обзор вероятностных моделей языка

Частотные модели.

  • Текстовые данные. Гипотеза «мешка слов». Принцип максимума правдоподобия.
  • Условия Каруша–Куна–Таккера. Частотные оценки вероятности слова в текстовой коллекции, в текстовом документе.
  • Токенизация; n-граммы, коллокации, словосочетания, термины. Алгоритм TopMine.
  • Перплексия.
  • Эмпирические законы Ципфа и Хипса.
  • Модели релевантности текста TF-IDF, BM-25, PageRank, TextRank.

Модели семантических векторных представлений.

  • Вероятностное тематическое моделирование.
  • Дистрибутивная семантика. Модель word2vec. Модель FastText.

Нейросетевые модели языка.

  • Нейрон и нейронные сети.
  • Модель машинного перевода. Модель внимания. Архитектура трансформера. Кодировщик и декодировщик.
  • Критерии обучения в машинном переводе.
  • Критерий маскированного языкового моделирования для обучения кодировщика. Модель BERT.

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 2.10.2025. видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 2.10.2025. видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 9,4 МБ) — обновление 21.10.2025. видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Мультимодальные тематические модели

Презентация: (PDF, 1,8 МБ) — обновление 21.10.2025. видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,5 МБ) — обновление 8.11.2025. видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация матрицы тематических векторов термов. Формулы М-шага.
  • Теорема о регуляризаторе, эквивалентном произвольной пост-обработке Е-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Анализ зависимостей

Презентация: (PDF, 2,6 МБ) — обновление 27.11.2025. видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Проект «Тематизатор»

Презентация: (PDF, 8,3 МБ) — обновление 27.11.2025. Видеозапись

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Тематическое моделирование в исторических и политологических исследованиях.
  • Проекты Школы Прикладного Анализа Данных.

Визуализация тематических моделей

  • Визуализация матричного разложения.
  • Динамика, иерархии, взаимосвязи, сегментация.
  • Спектр тем.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: загрузка, предобработка, моделирование, визуализация, коррекция.
  • Задача перестроения модели по экспертной разметке тем на релевантные, нерелевантные и мусорные
  • Этапизация работ и MVP Тематизатора.

Именование и суммаризация тем

Презентация: (PDF, 4,6 МБ) — обновление 27.11.2025. видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Байесовское обучение модели LDA

Презентация: (PDF, 1,7 МБ) — обновление 7.12.2025. видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: Теория регуляризации ARTM и библиотека с открытым кодом BigARTM. Москва, URSS. 2025. ISBN 978-5-9710-9933-8.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024
Личные инструменты