Сезонность

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
 
Строка 75: Строка 75:
== См. также ==
== См. также ==
* [[Коррелограмма]]
* [[Коррелограмма]]
 +
* [[Модель Брауна]]
 +
* [[Модель Хольта]]
 +
* [[Модель Хольта-Уинтерса]]
 +
* [[Модель Тейла-Вейджа]]
== Внешние ссылки ==
== Внешние ссылки ==

Текущая версия

Содержание

Сезонность - периодически колебания, наблюдаемые на временных рядах. Сезонность характерна для экономических временных рядов, реже она встречается в научных данных. В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Например, розничные продажи как правило растут с приближением новогодних праздников, а после них показывают спад. Соответственно временные ряды, отражающие эти сезонные эффекты, содержат периодические колебания.

Выделение сезонности

Перед выделением сезонных колебаний необходимо вычислить период сезонности. В большинстве случаев период известен из контекста задачи (если рассматривать розничные продажи, то период будет равен году). Однако если период не известен заранее, то его можно найти с помощью автокорреляционной функции.

Функции обнаружения сезонности встроены во многие программы, предназначенные для работы со статистическими данными, такие как Statistica.[1]


Модели, учитывающие сезонность

Сезонность можно учитывать, создавая модель временного ряда.

Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности.

Модели первого типа имеют вид:

x_t~=~\xi_t+\epsilon_t

\xi_t = a_tf_t,

где динамика величины a_t характеризует тенденцию развития процесса;

f_t, f_{t-1},..., f_{t-l+1} — коэффициенты сезонности;

l — количество фаз в полном сезонном цикле (если ряд представляет месячные наблюдения, то в экономике обычно l = 12, при квартальных данных l = 4 и т. п.);

\epsilon_t — неавтокоррелированный шум с нулевым математическим ожиданием.

Модели второго типа записываются как:

x_t~=~\xi_t+\epsilon_t

\xi_t = a_t+g_t,

где величина a_t описывает тенденцию развития процесса;

g_t, g_{t-1},..., g_{t-l+1} — аддитивные коэффициенты сезонности;

l — количество фаз в полном сезонном цикле;

\epsilon_t — неавтокоррелированный шум с нулевым математическим ожиданием.

Адаптивная модель с мультипликативной сезонностью была предложена П. Р. Уинтерсом. Аддитивная модель рассмотрена Г. Тейлом и С. Вейджем. Уинтерс поставил задачу разработать модель для прогнозирования объемов сезонных продаж с использованием ЭВМ. Модель должна быть такой, чтобы: а) прогнозы рассчитывались на основе одних и тех же программ для большого количества продуктов; б) вычисления производились быстро и дешево; в) использовался минимальный объем памяти для информации; г) учитывались изменяющиеся условия. Поэтому целесообразно в прогностических моделях учитывать конкретный характер тенденции и сезонных колебаний. Это и сделал Уинтерс с помощью экспоненциальной схемы. Модель при этом становится сложнее, зато и точность прогнозов для большинства товаров существенно возрастает.

Прогнозирование с коэффициентами сезонности

Данная модель содержит только сезонный эффект.

Модель имеет вид:

a_t = \alpha_1~\frac{x_t}{f_{t-l}}+(1-\alpha_1)a_{t-1}, 0<\alpha_1<1

f_t = \alpha_2~\frac{x_t}{a_t}+(1-\alpha_2)f_{t-l}, 0<\alpha_2<1

a_t является взвешенной суммой текущей оценки \frac{x_t}{f_{t-l}, полученной путем очищения от сезонных колебаний фактических данных x_t и предыдущей оценки a_{t-1}. В качестве коэффициента сезонности f_t берется его наиболее поздняя оценка, сделанная для аналогичной фазы цикла. Затем величина a_t, полученная по первому уравнению, используется для определения новой оценки коэффициента сезонности по второму уравнению.


Величины a_t и f_t могут быть записаны через прошлые данные и начальные условия:

a_t = \alpha_1~\sum_{n=0}^t (1-\alpha_1)^n\frac{x_{t-n}}{f_{t-l-n}}+(1-\alpha_1)^{t+1}a_0

f_t = \alpha_2~\sum_{n=0}^J (1-\alpha_2)^n\frac{x_{t-nl}}{f_{t-nl}}+(1-\alpha_2)^{J+1}f_{i,0},

где a_0 — начальное значение a;

f_{i,0} — начальное значение f в соответствующей i фазе (месяце) цикла (года);

J — наибольшая целая часть \frac{t}{l}.

См. также

Внешние ссылки

  • [1]Wikipedia - Seasonality
  • [2] Seasonal subseries plot
  • [3] Census

Литература

  1. Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов - М. Финансы и статистика, 2003
Личные инструменты