Сезонность

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
-
В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности.
+
<!-- Эта статья дорабатывается -->
 +
 
 +
В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными '''коэффициентами сезонности'''.
Модели первого типа имеют вид:
Модели первого типа имеют вид:
Строка 25: Строка 27:
<tex>g_t</tex>, <tex>g_{t-1}</tex>,..., <tex>g_{t-l+1}</tex> — аддитивные коэффициенты сезонности;
<tex>g_t</tex>, <tex>g_{t-1}</tex>,..., <tex>g_{t-l+1}</tex> — аддитивные коэффициенты сезонности;
-
<tex>l</tex> — количество фаз в полном сезонном цикле:
+
<tex>l</tex> — количество фаз в полном сезонном цикле;

Версия 11:34, 9 января 2009


В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности.

Модели первого типа имеют вид:

x_t~=~\xi_t+\epsilon_t

\xi_t = a_{l,t}f_t,

где динамика величины a_{l,t} характеризует тенденцию развития процесса;

f_t, f_{t-1},..., f_{t-l+1} — коэффициенты сезонности;

l — количество фаз в полном сезонном цикле (если ряд представляет месячные наблюдения, то в экономике обычно l = 12, при квартальных данных l = 4 и т. п.);

\epsilon_t — неавтокоррелированный шум с нулевым математическим ожиданием.

Модели второго типа записываются как:

x_t~=~\xi_t+\epsilon_t

\xi_t = a_{l,t}+g_t,

где величина a_{l,t} описывает тенденцию развития процесса;

g_t, g_{t-1},..., g_{t-l+1} — аддитивные коэффициенты сезонности;

l — количество фаз в полном сезонном цикле;

Личные инструменты