Сезонность
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности. | В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности. | ||
Модели первого типа имеют вид: | Модели первого типа имеют вид: | ||
- | <tex>x_t~=~\ | + | <tex>x_t~=~\xi_t+\epsilon_t</tex> |
+ | <tex>\xi_t = a_{l,t}f_t</tex> | ||
где динамика величины <tex>a_{l,t}</tex> характеризует тенденцию развития процесса; | где динамика величины <tex>a_{l,t}</tex> характеризует тенденцию развития процесса; |
Версия 11:24, 9 января 2009
В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности. Модели первого типа имеют вид:
где динамика величины характеризует тенденцию развития процесса; , ,..., — коэффициенты сезонности; — количество фаз в полном сезонном цикле (если ряд представляет месячные наблюдения, то в экономике обычно = 12, при квартальных данных = 4 и т. п.); — неавтокоррелированный шум с нулевым математическим ожиданием.
Модели второго типа записываются как: где величина (h, t описывает тенденцию развития процесса; , ёи gt -it •... gt - г + i—аддитивные коэффициенты сезонности; / — количество фаз в полном сезонном цикле: