Критерий Вальда-Вольфовица

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Текущая версия (01:42, 25 декабря 2014) (править) (отменить)
 
(7 промежуточных версий не показаны.)
Строка 1: Строка 1:
==Описание критерия==
==Описание критерия==
-
Критерий серий Вальда-Вольфовица может быть использован как тест для [[анализа регресионных остатков]] наряду с [[Критерий Уилкоксона-Манна-Уитни|критерием Уилкоксона-Манна-Уитни]], [[Критерий Зигеля-Тьюки|критерием Зигеля-Тьюки]], [[Критерий знаков|критерием знаков]], [[Критерий экстремумов|критерием экстремумов]].<br>
+
Критерий серий Вальда-Вольфовица может быть использован как тест для [[Анализ регрессионных остатков (пример)|анализа регрессионных остатков]] наряду с [[Критерий Уилкоксона-Манна-Уитни|критерием Уилкоксона-Манна-Уитни]], [[Критерий Зигеля-Тьюки|критерием Зигеля-Тьюки]], [[Критерий знаков|критерием знаков]], [[Критерий экстремумов|критерием экстремумов]].<br>
-
В этом случае критерий серий Вальда-Вольфовица испаользуется для проверки гипотезы H<sub>0</sub>: <tex>\varepsilon_{i}</tex> - независимая, одинаково распределенная сл. величина, где <tex>\varepsilon_{i}=y_{i}-\hat{y_{i}}</tex><br>
+
В этом случае критерий серий Вальда-Вольфовица используется для проверки гипотезы H<sub>0</sub>: <tex>\varepsilon_{i}</tex> - независимая, одинаково распределенная сл. величина, где <tex>\varepsilon_{i}=y_{i}-\hat{y_{i}}</tex><br>
При анализе регресионных остатков будем выделять их в серии одного знака<br>
При анализе регресионных остатков будем выделять их в серии одного знака<br>
[[Изображение:Vald-volf.JPG]]<br>
[[Изображение:Vald-volf.JPG]]<br>
N<sub>s</sub> - число серий <tex>\sim</tex> N(EN<sub>s</sub>,DN<sub>s</sub>)<br>
N<sub>s</sub> - число серий <tex>\sim</tex> N(EN<sub>s</sub>,DN<sub>s</sub>)<br>
<tex>E\varepsilon_{i}=0</tex><br>
<tex>E\varepsilon_{i}=0</tex><br>
-
<tex>EN_{s}=\frac{2n_{1}n_{2}}{n_{1}n_{2}}+1</tex>, где<br>
+
<tex>EN_{s}=\frac{2n_{1}n_{2}}{n_{1}+n_{2}}+1</tex>, где<br>
n<sub>1</sub> - число <tex>\varepsilon_{i}\geq0</tex><br>
n<sub>1</sub> - число <tex>\varepsilon_{i}\geq0</tex><br>
n<sub>2</sub> - число <tex>\varepsilon_{i}<0</tex><br>
n<sub>2</sub> - число <tex>\varepsilon_{i}<0</tex><br>
Строка 12: Строка 12:
Тогда по критерию серий Вальда-Вольфовица:<br>
Тогда по критерию серий Вальда-Вольфовица:<br>
<tex>\frac{N_{s}-EN_{s}}{\sqrt{DN_{s}}}\sim N(0,1)</tex><br>
<tex>\frac{N_{s}-EN_{s}}{\sqrt{DN_{s}}}\sim N(0,1)</tex><br>
-
Исходя из полученного значения H<sub>0</sub> применяется при неком уровне значимости или овтергается.
+
Исходя из полученного значения H<sub>0</sub> применяется при неком уровне значимости или отвергается.
==Смотри также==
==Смотри также==
-
# [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2008]]
+
* [[Регрессионный анализ]]
 +
* [[Анализ регрессионных остатков]]
 +
* [[Анализ регрессионных остатков (пример)]]
 +
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2008]]
 +
==Литература==
 +
# Дерфелль К. Статистика в аналитической химии. — М.: Мир,1994. - 170 с.
 +
[[Категория:Энциклопедия анализа данных]]
 +
[[Категория:Регрессионный анализ]]

Текущая версия

Описание критерия

Критерий серий Вальда-Вольфовица может быть использован как тест для анализа регрессионных остатков наряду с критерием Уилкоксона-Манна-Уитни, критерием Зигеля-Тьюки, критерием знаков, критерием экстремумов.
В этом случае критерий серий Вальда-Вольфовица используется для проверки гипотезы H0: \varepsilon_{i} - независимая, одинаково распределенная сл. величина, где \varepsilon_{i}=y_{i}-\hat{y_{i}}
При анализе регресионных остатков будем выделять их в серии одного знака
Изображение:Vald-volf.JPG
Ns - число серий \sim N(ENs,DNs)
E\varepsilon_{i}=0
EN_{s}=\frac{2n_{1}n_{2}}{n_{1}+n_{2}}+1, где
n1 - число \varepsilon_{i}\geq0
n2 - число \varepsilon_{i}<0
DN_{s}=\frac{2n_{1}n_{2}}{(n_{1}+n_{2})^{2}}\frac{2n_{1}n_{2}-(n_{1}+n_{2})}{n_{1}+n_{2}-1}
Тогда по критерию серий Вальда-Вольфовица:
\frac{N_{s}-EN_{s}}{\sqrt{DN_{s}}}\sim N(0,1)
Исходя из полученного значения H0 применяется при неком уровне значимости или отвергается.

Смотри также

Литература

  1. Дерфелль К. Статистика в аналитической химии. — М.: Мир,1994. - 170 с.