Участник:Riabenko/Песочница

Материал из MachineLearning.

< Участник:Riabenko(Различия между версиями)
Перейти к: навигация, поиск
м (Пример)
Текущая версия (23:34, 29 октября 2012) (править) (отменить)
м (Полностью удалено содержимое страницы)
 
(9 промежуточных версий не показаны.)
Строка 1: Строка 1:
-
= Задание 2. Исследование свойств многомерного статистического метода на модельных данных =
 
-
== Пример ==
 
-
Исследуем чувствительность однофакторного дисперсионного анализа к расстояниям между выборками и дисперсиям выборок. <br>
 
-
<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,</tex> <br>
 
-
<tex>\mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,</tex> <br>
 
-
<tex>\sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,</tex> <br>
 
-
<tex>n_1=n_2=n_3=20.</tex> <br>
 
-
 
-
 
-
== Задания ==
 
-
=== Дисперсионный анализ ===
 
-
:: Студент 0: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстояниям между выборками и дисперсиям выборок. Сравнить результаты применения процедур Тьюки-Крамера и ЛСД.
 
-
::::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br>
 
-
 
-
::Студент 1: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и размеру одной из выборок.
 
-
::::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_2=\sigma_3 = 1,\;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
 
-
 
-
::Студент 2: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и дисперсии одной из выборок.
 
-
::::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
 
-
 
-
::Студент 4: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок. Сравнить результаты применения поправки Бонферрони и метода ЛСД.
 
-
::::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br>
 
-
 
-
::Студент 3: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок.
 
-
::::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br>
 

Текущая версия

Личные инструменты