Участник:Riabenko/Песочница
Материал из MachineLearning.
(Различия между версиями)
м (→Пример) |
м (→Задания) |
||
Строка 11: | Строка 11: | ||
== Задания == | == Задания == | ||
=== Дисперсионный анализ === | === Дисперсионный анализ === | ||
- | :: | + | ::Полежаев: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстояниям между выборками и дисперсиям выборок. Сравнить результаты применения процедур Тьюки-Крамера и ЛСД. |
- | + | :::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br> | |
- | :: | + | ::Игнатьев: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и размеру одной из выборок. |
- | + | :::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_2=\sigma_3 = 1,\;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br> | |
- | :: | + | ::Некрасов: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и дисперсии одной из выборок. |
- | + | :::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br> | |
- | :: | + | ::Фигурнов: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок. Сравнить результаты применения поправки Бонферрони и метода ЛСД. |
- | + | :::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_2=\sigma_3 = 0.01\,:\,0.01\,:\,1,\;\; n_1=n_2=n_3=20.</tex> <br> | |
- | :: | + | ::Сабурова: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок. |
- | + | :::<tex>x_i^{n_i}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,3,\;\; \mu_2 = 0, \;\; -\mu_1=\mu_3 = \mu = 0\,:\,0.01\,:\,1,\;\; \sigma_1=\sigma_3 = 1,\;\; \sigma_2 = 0.02\,:\,0.02\,:\,2, \;\; n_1=n_3=20, \;\; n_3=10\,:\,5\,:\,100.</tex> <br> | |
+ | |||
+ | === Множественная проверка гипотез === | ||
+ | Сравнить мощность и корректность процедур множественной проверки гипотез, контролирующих указанную меру числа ошибок второго рода. <br> | ||
+ | <tex> x_i^{n}, \;\; x_i \sim N(\mu_i, \sigma_i), \;\; i=1,\ldots,m;</tex><br> | ||
+ | <tex> H_i\,:\;\mu_i=0, \;\; H'_i\,:\;\mu_i\neq 0; \;\;</tex> для проверки гипотезы используется [[критерий Стьюдента]], | ||
+ | <tex> n=50.</tex> | ||
+ | ====FWER==== | ||
+ | :: Гаврилюк: методы Холма и Шидака, | ||
+ | :::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FWER\leq\alpha=0.05,</tex> <br> | ||
+ | :::<tex> \mu_i \sim N(0.5, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | :: Елшин: методы Холма и Шидака, | ||
+ | :::<tex> m = 10\,:\,5\,:\,100, \;\; m_0 = 10, \;\; FWER\leq\alpha=10^{-10:0.5:-1},</tex> | ||
+ | :::<tex> \mu_i \sim N(1, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | :: Ермушева: метод Холма и поправка Бонферрони, | ||
+ | :::<tex> m = 100, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FWER\leq\alpha=0.05,</tex> | ||
+ | :::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | :: Марченко: метод Шидака и поправка Бонферрони, | ||
+ | :::<tex> m = 10\,:\,5\,:\,100, \;\; m_0 = 10, \;\; FWER\leq\alpha=0.05,</tex> | ||
+ | :::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | ====FDR==== | ||
+ | :: Кириллов: методы Бенджамини-Хохберга и Бенджамини-Иекутиели, | ||
+ | :::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> <br> | ||
+ | :::<tex> \mu_i \sim N(0.5, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | ::Меркулова: методы Бенджамини-Хохберга и Бенджамини-Иекутиели, | ||
+ | :::<tex> m = 10\,:\,5\,:\,100, \;\; m_0 = 10, \;\; FDR\leq q=10^{-10:0.5:-1},</tex> | ||
+ | :::<tex> \mu_i \sim N(1, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | :: Соколов: метод Бенджамини-Хохберга в чистом виде и с модификацией Стори для оценки <tex>m_0</tex>, | ||
+ | :::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> <br> | ||
+ | :::<tex> \mu_i \sim N(0.5, 0.1), \; i=1,\ldots,m_0; \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | :: Новиков: метод Бенджамини-Хохберга в чистом виде и метод Бенджамини-Иекутиели с модификацией Стори для оценки <tex>m_0</tex>, | ||
+ | :::<tex> m = 100, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> | ||
+ | :::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> | ||
+ | |||
+ | :: Александров: метод Бенджамини-Хохберга в чистом виде и с предварительной процедурой множественной проверки с контролем FDR на уровне <tex>q'</tex> для оценки <tex>m_0</tex>, | ||
+ | :::<tex> m = 20\,:\,10\,:\,500, \;\; m_0 = 5\,:\,5\,:\,m-5, \;\; FDR\leq q=0.05,</tex> <br> | ||
+ | :::<tex> \mu_1=\ldots=\mu_{m_0} = 0\,:\,0.1\,:\,2, \;\; \mu_i = 0, \; i=m_0+1,\ldots,m.</tex> <br> |
Версия 19:06, 22 октября 2012
Содержание |
Задание 2. Исследование свойств многомерного статистического метода на модельных данных
Пример
Исследуем чувствительность однофакторного дисперсионного анализа к расстояниям между выборками и дисперсиям выборок.
Задания
Дисперсионный анализ
- Полежаев: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстояниям между выборками и дисперсиям выборок. Сравнить результаты применения процедур Тьюки-Крамера и ЛСД.
-
- Полежаев: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстояниям между выборками и дисперсиям выборок. Сравнить результаты применения процедур Тьюки-Крамера и ЛСД.
- Игнатьев: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и размеру одной из выборок.
-
- Игнатьев: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и размеру одной из выборок.
- Некрасов: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и дисперсии одной из выборок.
-
- Некрасов: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних при помощи процедуры Тьюки-Крамера к расстоянию между выборками и дисперсии одной из выборок.
- Фигурнов: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок. Сравнить результаты применения поправки Бонферрони и метода ЛСД.
-
- Фигурнов: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок. Сравнить результаты применения поправки Бонферрони и метода ЛСД.
- Сабурова: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок.
-
- Сабурова: исследовать чувствительность однофакторного дисперсионного анализа со сравнением средних с использованием поправки Бонферрони к расстоянию между выборками и дисперсии одной из выборок.
Множественная проверка гипотез
Сравнить мощность и корректность процедур множественной проверки гипотез, контролирующих указанную меру числа ошибок второго рода.
для проверки гипотезы используется критерий Стьюдента,
FWER
- Гаврилюк: методы Холма и Шидака,
-
- Гаврилюк: методы Холма и Шидака,
- Елшин: методы Холма и Шидака,
- Елшин: методы Холма и Шидака,
- Ермушева: метод Холма и поправка Бонферрони,
- Ермушева: метод Холма и поправка Бонферрони,
- Марченко: метод Шидака и поправка Бонферрони,
- Марченко: метод Шидака и поправка Бонферрони,
FDR
- Кириллов: методы Бенджамини-Хохберга и Бенджамини-Иекутиели,
-
- Кириллов: методы Бенджамини-Хохберга и Бенджамини-Иекутиели,
- Меркулова: методы Бенджамини-Хохберга и Бенджамини-Иекутиели,
- Меркулова: методы Бенджамини-Хохберга и Бенджамини-Иекутиели,
- Соколов: метод Бенджамини-Хохберга в чистом виде и с модификацией Стори для оценки ,
-
- Соколов: метод Бенджамини-Хохберга в чистом виде и с модификацией Стори для оценки ,
- Новиков: метод Бенджамини-Хохберга в чистом виде и метод Бенджамини-Иекутиели с модификацией Стори для оценки ,
- Новиков: метод Бенджамини-Хохберга в чистом виде и метод Бенджамини-Иекутиели с модификацией Стори для оценки ,
- Александров: метод Бенджамини-Хохберга в чистом виде и с предварительной процедурой множественной проверки с контролем FDR на уровне для оценки ,
-
- Александров: метод Бенджамини-Хохберга в чистом виде и с предварительной процедурой множественной проверки с контролем FDR на уровне для оценки ,