Построение интегральных индикаторов по ранговым признакам (пример)
Материал из MachineLearning.
(→Постановка задачи) |
|||
Строка 5: | Строка 5: | ||
== Постановка задачи == | == Постановка задачи == | ||
- | Пусть <tex>X</tex> - пространство объектов, <tex>{\{x_i\}}_{i=1}^{m}\subset X</tex> -выборка объектов. Каждый объект | + | Пусть <tex>X</tex> - пространство объектов, <tex>{\{x_i\}}_{i=1}^{m}\subset X</tex> - выборка объектов. Каждый объект |
<tex>x\in X</tex> характеризуется набором ранговых признаков <tex>{\{f_j\}}_{j=1}^{n}</tex>. | <tex>x\in X</tex> характеризуется набором ранговых признаков <tex>{\{f_j\}}_{j=1}^{n}</tex>. | ||
Версия 20:39, 14 декабря 2010
Аннотация
В данной работе описывается подход к построению интегрального индикатора для множества объектов, характеризуемых признаками, выраженными в ранговых шкалах. В качестве интегрального индикатора предлагается рассматривать бинарное отношение на множестве объектов, позволяющее сравнивать объекты между собой. Бинарное отношение строится на основании признакового описания объектов и информации о важности каждого признака, задаваемой экспертами. Подход продемонстрирован на на работе алгоритма уточнения экспертной информации.
Ключевые слова: интегральный индикатор, экспертное оценивание, ранговые шкалы, бинарные отношения.
Постановка задачи
Пусть - пространство объектов, - выборка объектов. Каждый объект характеризуется набором ранговых признаков .
Пусть признаковое описание объектов задается в виде матрицы размера , где - место i-го объекта в списке, отсортированном по убыванию k-го признака.
Два объекта и при векторе весов признаков сравниваются следующим образом.
не хуже , если где , если i-й объект не хуже j-го по k-му признаку, и в противном случае.
Вектор нормирован .
Введенное бинарное отношение - интегральный индикатор, соответствующий вектору весов признаков .
Вектору соответствует матрица попарных сравнений размера , где , когда i-й объект не хуже j-го при указаном сравнении и в противном случае.
- всегда.
Пусть правильный порядок объектов задается с помощью матрицы попарных сравнений по желаемому интегральному индикатору.
Пусть функционал потерь
Такой функционал потерь равен числу нарушений порядка в списке, отсортированном по текущему интегральному индикатору, по сравнению с правильным порядком.
Тогда задача формулируется следующим образом.
Дано: начальное приближение .
Найти: такой вектор , что
.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |