Построение интегральных индикаторов по ранговым признакам (пример)
Материал из MachineLearning.
Строка 12: | Строка 12: | ||
Два объекта <tex>x_i</tex> и <tex>x_j</tex> при векторе весов признаков <tex>\mathbf w</tex> сравниваются следующим образом. | Два объекта <tex>x_i</tex> и <tex>x_j</tex> при векторе весов признаков <tex>\mathbf w</tex> сравниваются следующим образом. | ||
- | <tex>x_i</tex> не хуже <tex>x_j</tex>, если <tex>{\mathbf u}^{ij})^{T}{\mathbf w} \geq 0,</tex> где | + | <tex>x_i</tex> не хуже <tex>x_j</tex>, если <tex>({\mathbf u}^{ij})^{T}{\mathbf w} \geq 0,</tex> где |
<tex>{u}^{ij}_k = 1</tex>, если i-й объект не хуже j-го по k-му признаку, и <tex>{u}^{ij}_k = -1</tex> в противном случае. | <tex>{u}^{ij}_k = 1</tex>, если i-й объект не хуже j-го по k-му признаку, и <tex>{u}^{ij}_k = -1</tex> в противном случае. | ||
Версия 18:37, 7 декабря 2010
Аннотация
В данной работе описывается подход к построению интегрального индикатора для множества объектов, характеризуемых признаками, выраженными в ранговых шкалах. В качестве интегрального индикатора предлагается рассматривать бинарное отношение на множестве объектов, позволяющее сравнивать объекты между собой. Бинарное отношение строится на основании признакового описания объектов и информации о важности каждого признака, задаваемой экспертами. Подход продемонстрирован на на работе алгоритма уточнения экспертной информации.
Ключевые слова: интегральный индикатор, экспертное оценивание, ранговые шкалы, бинарные отношения.
Постановка задачи
Пусть - пространство объектов, -выборка объектов. Каждый объект характеризуется набором ранговых признаков .
Пусть признаковое описание объектов задается в виде матрицы размера , где - место i-го объекта в списке, отсортированном по убыванию k-го признака.
Два объекта и при векторе весов признаков сравниваются следующим образом.
не хуже , если где , если i-й объект не хуже j-го по k-му признаку, и в противном случае.
Вектор нормирован .
Введенное бинарное отношение - интегральный индикатор, соответствующий вектору весов признаков .
Вектору соответствует матрица попарных сравнений размера , где , когда i-й объект не хуже j-го при указаном сравнении и в противном случае. - всегда.
Пусть правильный порядок объектов задается с помощью матрицы попарных сравнений по желаемому интегральному индикатору. Пусть функционал потерь
Такой функционал потерь равен числу нарушений порядка в списке, отсортированном по текущему интегральному индикатору, по сравнению с правильным порядком.
Тогда задача формулируется следующим образом.
Дано: начальное приближение .
Найти: такой вектор , что
.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |