Построение интегральных индикаторов по ранговым признакам (пример)
Материал из MachineLearning.
Строка 29: | Строка 29: | ||
Тогда задача формулируется следующим образом. | Тогда задача формулируется следующим образом. | ||
- | Дано: <tex>{\{x_i\}}_{i=1}^{m} | + | Дано: <tex>{\{x_i\}}_{i=1}^{m},A,Q^0</tex> начальное приближение <tex>\mathbf w^0</tex>. |
- | Найти: такой вектор <tex>\mathbf w^{\mbox {opt}}~\in~\mathcal{W}~=~\{{\mathbf w}~\in~\mathbb{R}^{n}|\sum_{k=1}^n w_{k}~=~1\}</tex> | + | Найти: такой вектор <tex>\mathbf w^{\mbox {opt}}~\in~\mathcal{W}~=~\{{\mathbf w}~\in~\mathbb{R}^{n}|\sum_{k=1}^n w_{k}~=~1\}</tex>, что |
+ | |||
+ | <tex>{\mathbf w}^{\mbox {opt}} = \arg \min_{{\mathbf w}\in \mathcal{W}} L </tex>. | ||
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/doc Ссылка на текст отчёта] | * [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/doc Ссылка на текст отчёта] | ||
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/code Ссылка на код] | * [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/code Ссылка на код] | ||
{{Задание|Александр Фирстенко|В.В.Стрижов|24 декабря 2010|First|Strijov}} | {{Задание|Александр Фирстенко|В.В.Стрижов|24 декабря 2010|First|Strijov}} | ||
[[Категория:Практика и вычислительные эксперименты]] | [[Категория:Практика и вычислительные эксперименты]] |
Версия 18:34, 7 декабря 2010
Аннотация
В данной работе описывается подход к построению интегрального индикатора для множества объектов, характеризуемых признаками, выраженными в ранговых шкалах. В качестве интегрального индикатора предлагается рассматривать бинарное отношение на множестве объектов, позволяющее сравнивать объекты между собой. Бинарное отношение строится на основании признакового описания объектов и информации о важности каждого признака, задаваемой экспертами. Подход продемонстрирован на на работе алгоритма уточнения экспертной информации. Ключевые слова: интегральный индикатор, экспертное оценивание, ранговые шкалы, бинарные отношения.
Постановка задачи
Пусть - пространство объектов, -выборка объектов. Каждый объект характеризуется набором ранговых признаков .
Пусть признаковое описание объектов задается в виде матрицы размера , где - место i-го объекта в списке, отсортированном по убыванию k-го признака.
Два объекта и при векторе весов признаков сравниваются следующим образом.
не хуже , если где , если i-й объект не хуже j-го по k-му признаку, и в противном случае.
Вектор нормирован .
Введенное бинарное отношение - интегральный индикатор, соответствующий вектору весов признаков .
Вектору соответствует матрица попарных сравнений размера , где , когда i-й объект не хуже j-го при указаном сравнении и в противном случае. - всегда.
Пусть правильный порядок объектов задается с помощью матрицы попарных сравнений по желаемому интегральному индикатору. Пусть функционал потерь
Такой функционал потерь равен числу нарушений порядка в списке, отсортированном по текущему интегральному индикатору, по сравнению с правильным порядком.
Тогда задача формулируется следующим образом.
Дано: начальное приближение . Найти: такой вектор , что
.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |