Построение интегральных индикаторов по ранговым признакам (пример)
Материал из MachineLearning.
Строка 4: | Строка 4: | ||
== Постановка задачи == | == Постановка задачи == | ||
- | + | Пусть <tex>X</tex> - пространство объектов, <tex>{\{x_i\}}_{i=1}^{m}\subset X</tex> -выборка объектов. Каждый объект | |
<tex>x\in X</tex> характеризуется набором ранговых признаков <tex>{\{f_j\}}_{j=1}^{n}</tex>. | <tex>x\in X</tex> характеризуется набором ранговых признаков <tex>{\{f_j\}}_{j=1}^{n}</tex>. | ||
- | + | Пусть признаковое описание объектов задается в виде матрицы <tex>A</tex> размера <tex>m \times n</tex>, где <tex>a^{ik}</tex> - место i-го объекта в списке, отсортированном по убыванию k-го признака. | |
+ | |||
+ | Два объекта <tex>x_i</tex> и <tex>x_j</tex> при векторе весов признаков <tex>\mathbf w</tex> сравниваются следующим образом. | ||
- | |||
<tex>x_i</tex> не хуже <tex>x_j</tex>, если <tex>{\mathbf u}^{ij})^{T}{\mathbf w} \geq 0,</tex> где | <tex>x_i</tex> не хуже <tex>x_j</tex>, если <tex>{\mathbf u}^{ij})^{T}{\mathbf w} \geq 0,</tex> где | ||
<tex>{u}^{ij}_k = 1</tex>, если i-й объект не хуже j-го по k-му признаку, и <tex>{u}^{ij}_k = -1</tex> в противном случае. | <tex>{u}^{ij}_k = 1</tex>, если i-й объект не хуже j-го по k-му признаку, и <tex>{u}^{ij}_k = -1</tex> в противном случае. | ||
- | + | ||
- | <tex>\mathbf w^ | + | Вектор <tex>\mathbf w</tex> нормирован <tex>\sum_{k=1}^{n} w_k=1</tex>. |
+ | |||
+ | Введенное бинарное отношение - интегральный индикатор, соответствующий вектору весов признаков <tex>\mathbf w</tex>. | ||
+ | |||
+ | Вектору <tex>\mathbf w</tex> соответствует матрица попарных сравнений <tex>Q(A,{\mathbf w})</tex> размера <tex>m \times m</tex>, где <tex>q^{ij}=1</tex>, когда i-й объект не хуже j-го при указаном сравнении и <tex>q^{ij}=-1</tex> в противном случае.<tex>q^{ii}=1</tex> - всегда. | ||
+ | |||
+ | Пусть правильный порядок объектов задается с помощью матрицы <tex>Q_0</tex> попарных сравнений по желаемому интегральному индикатору. | ||
+ | Пусть функционал потерь | ||
+ | |||
+ | <tex>L(Q^0,A,{\mathbf w}) = \sum_{i=1}^n \sum_{j=i+1}^n \frac{|q^{0}_{ij} - q_{ij}(A,{\mathbf w})|}2</tex> | ||
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/doc Ссылка на текст отчёта] | * [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/doc Ссылка на текст отчёта] | ||
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/code Ссылка на код] | * [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/code Ссылка на код] | ||
{{Задание|Александр Фирстенко|В.В.Стрижов|24 декабря 2010|First|Strijov}} | {{Задание|Александр Фирстенко|В.В.Стрижов|24 декабря 2010|First|Strijov}} | ||
[[Категория:Практика и вычислительные эксперименты]] | [[Категория:Практика и вычислительные эксперименты]] |
Версия 18:27, 7 декабря 2010
Аннотация
В данной работе описывается подход к построению интегрального индикатора для множества объектов, характеризуемых признаками, выраженными в ранговых шкалах. В качестве интегрального индикатора предлагается рассматривать бинарное отношение на множестве объектов, позволяющее сравнивать объекты между собой. Бинарное отношение строится на основании признакового описания объектов и информации о важности каждого признака, задаваемой экспертами. Подход продемонстрирован на на работе алгоритма уточнения экспертной информации. Ключевые слова: интегральный индикатор, экспертное оценивание, ранговые шкалы, бинарные отношения.
Постановка задачи
Пусть - пространство объектов, -выборка объектов. Каждый объект характеризуется набором ранговых признаков .
Пусть признаковое описание объектов задается в виде матрицы размера , где - место i-го объекта в списке, отсортированном по убыванию k-го признака.
Два объекта и при векторе весов признаков сравниваются следующим образом.
не хуже , если где , если i-й объект не хуже j-го по k-му признаку, и в противном случае.
Вектор нормирован .
Введенное бинарное отношение - интегральный индикатор, соответствующий вектору весов признаков .
Вектору соответствует матрица попарных сравнений размера , где , когда i-й объект не хуже j-го при указаном сравнении и в противном случае. - всегда.
Пусть правильный порядок объектов задается с помощью матрицы попарных сравнений по желаемому интегральному индикатору. Пусть функционал потерь
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |