Вероятностные языковые модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(уточнение, дополнение)
(изменено название курса, первая лекция)
 
(347 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
До 2026 года курс назывался «Вероятностные тематические модели».
-
Условием сдачи спецкурса является выполнение обязательных практических заданий.
+
Вероятностные языковые модели (probabilistic language model) выявляют закономерности в строении текста, чтобы предсказывать появление каждого следующего слова. Чем лучше модель понимает строение языка, тем точнее предсказания слов, тем более она полезна в задачах анализа текстов, информационного поиска (IR, Information Retrieval), обработки естественного языка (NLP, Natural Language Processing), понимания естественного языка (NLU, Natural Language Understanding).
-
=== Задачи анализа текстов. Вероятностные модели коллекций текстов ===
+
Наиболее подробно в курсе изучается вероятностное [[тематическое моделирование]] (Probabilistic Topic Modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, создавать системы семантического разведочного поиска (Exploratory Search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. Развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] ([[ARTM]]). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
'''Задачи классификации текстов.'''
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Желательно знание курсов математической статистики, методов оптимизации, машинного обучения, языка программирования Python.
-
* Коллекция текстовых документов. Векторное представление документа.
+
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка. Распознавание текстов заданной тематики. Анализ тональности. Частоты слов (терминов) как признаки. Линейный классификатор.
+
-
* Задача распознавание жанра текстов. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
'''Задачи информационного поиска.'''
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
* Задача поиска документов по запросу. Инвертированный индекс. Косинусная мера сходства.
+
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
-
'''Униграммная модель документов и коллекции.'''
+
'''Основной материал:'''
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2025}}.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYFeH50yAki9uSrk7PrjBUoL Плейлист видеозаписей, 2025 осень (МФТИ)].
-
* Униграммная модель документов и коллекции. Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
-
'''Литература:''' [Маннинг, 2011].
+
= Программа курса =
-
=== Вероятностный латентный семантический анализ ===
+
== Обзор вероятностных моделей языка ==
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
'''Частотные модели.'''
 +
* Текстовые данные. Гипотеза «мешка слов». Принцип максимума правдоподобия.
 +
* Условия Каруша–Куна–Таккера. Частотные оценки вероятности слова в текстовой коллекции, в текстовом документе.
 +
* Токенизация; n-граммы, коллокации, словосочетания, термины. Алгоритм TopMine.
 +
* Перплексия.
 +
* Эмпирические законы Ципфа и Хипса.
 +
* Модели релевантности текста TF-IDF, BM-25, PageRank, TextRank.
-
'''Мотивации вероятностного тематического моделирования
+
'''Модели семантических векторных представлений.'''
-
* Идея перехода от вектора (терминов) к вектору тем.
+
* Вероятностное тематическое моделирование.
-
* Цели тематического моделирования: поиск научной информации, агрегирование и анализ новостных потоков, формирование сжатых признаковых описаний документов для классификации и категоризации текстовых документов, обход проблем синонимии и омонимии.
+
* Дистрибутивная семантика. Модель word2vec. Модель FastText.
-
'''Задача тематического моделирования.'''
+
'''Нейросетевые модели языка.'''
-
* Вероятностное пространство. Тема как латентная (скрытая) переменная. Представление темы дискретным распределением на множестве слов.
+
* Нейрон и нейронные сети.
-
* Модель смеси униграмм. Недостаток: каждый документ принадлежит только одной теме.
+
* Модель машинного перевода. Модель внимания. Архитектура трансформера. Кодировщик и декодировщик.
-
* Представление документа дискретным распределением на множестве тем. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
* Критерии обучения в машинном переводе.
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
* Критерий маскированного языкового моделирования для обучения кодировщика. Модель BERT.
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
== Задача тематического моделирования ==
-
* Частотные оценки условных вероятностей терминов тем и тем документов. Формула Байеса для апостериорной вероятности темы. Элементарное обоснование ЕМ-алгоритма.
+
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 11.09.2025}}.
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
[https://youtu.be/Xit8NqCvdyA?t=74 видеозапись]
-
* Рациональный ЕМ-алгоритм.
+
-
'''Проведение экспериментов на модельных данных.'''
+
'''Цели и задачи тематического моделирования.'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Вероятностная модель порождения текста.
-
* Проблема неединственности и неустойчивости матричного разложения. Оценивание устойчивости решения.
+
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
'''Задание 1.1'''
+
'''Аддитивная регуляризация тематических моделей.'''
-
Обязательные пункты: 1–3 и любой из последующих.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
-
# Реализовать рациональный ЕМ-алгоритм.
+
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Реализовать вычисление эмпирического распределения и доверительного интервала точности модели и точности восстановления при заданном числе случайных инициализаций. Всегда ли EM-алгоритм сходится к одному и тому же решению?
+
-
# Исследовать, когда проблема неустойчивости возникает, когда не возникает. Как неустойчивость зависит от степени разреженности исходных модельных распределений?
+
-
'''Литература:''' [Hofmann, 1999].
+
'''Практика тематического моделирования.'''
 +
* Проект с открытым кодом BigARTM.
 +
* Этапы решения практических задач.
 +
* Методы предварительной обработки текста.
 +
* Датасеты и практические задания по курсу.
-
===Модификации алгоритма обучения модели PLSA===
+
== Моделирование локального контекста ==
 +
Презентация: [[Media:Voron25ptm-local.pdf|(PDF, 3,2 МБ)]] {{важно|— обновление 14.09.2025}}.
 +
[https://youtu.be/Zl0VMJ_A9J0 видеозапись]
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. PLSA, формулы Е-шага и М-шага.
+
'''Онлайновый ЕМ-алгоритм.'''
 +
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Онлайновый EM-алгоритм для ARTM.
 +
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
'''Обобщённый ЕМ-алгоритм (GEM).'''
+
'''Линейная тематизация текста.'''
-
* Эвристика частых обновлений параметров.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Проблема хранения трёхмерных матриц.
+
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
-
* Эвристика замены средних экспоненциальным сглаживанием.
+
* Двунаправленная тематическая модель контекста.
 +
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Аналогия с нейросетевыми моделями языка.'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
-
* Эвристика замены апостериорного распределения несмещённым эмпирическим.
+
* Модель само-внимания (self-attention) Query-Key-Value.
-
* Алгоритм сэмплирования Гиббса.
+
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
-
* Эксперименты по подбору оптимального числа сэмплирований.
+
* Нейросетевая тематическая модель Contextual-Top2Vec.
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
-
* Проблема больших данных.
+
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
-
* Эвристика разделения М-шага.
+
[https://youtu.be/5DXhffGMjBM видеозапись]
-
* Эвристика разделения коллекции на пачки документов.
+
-
* Добавление новых документов (folding-in).
+
-
'''Способы формирования начальных приближений.'''
+
'''Часто используемые регуляризаторы.'''
-
* Случайная инициализация.
+
* Сглаживание и разреживание.
-
* Инициализация по документам.
+
* Частичное обучение.
 +
* Декоррелирование тем.
 +
* Разреживание для отбора тем.
-
'''Частичное обучение (Semi-supervised EM).'''
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
-
* Виды обучающих данных: привязка документа к темам, привязка термина к темам, нерелевантность, переранжирование списков терминов темах и тем документов, виртуальные документы.
+
* Улучшение сходимости несмещёнными оценками.
-
* Использование дополнительной информации для инициализации.
+
* Замена логарифма в функции потерь.
-
* Использование дополнительной информации в качестве поправок в ЕМ-алгоритме.
+
* Матричная запись ЕМ-алгоритма.
 +
* Подбор коэффициентов регуляризации. Траектория регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
'''Задание 1.2'''
+
'''Эксперименты с регуляризацией.'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Производительность BigARTM
-
# Реализовать онлайновый алгоритм OEM.
+
* Оценивание качества: перплексия, когерентность, лексическое ядро
-
# Исследовать зависимость точности модели и точности восстановления от размера первой пачки, размера последующих пачек, числа итераций на внутреннем и внешнем циклах алгоритма OEM.
+
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
-
# Исследовать, насколько второй проход по коллекции (без инициализации p(w|t)) способен улучшить качество модели.
+
* Комбинирование регуляризаторов, эмпирические рекомендации.
-
# Исследовать влияние частичного обучения на точность модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения точности и устойчивости модели.
+
* Эксперименты с отбором тем на синтетических и реальных данных.
-
# Сравнить скорость работы OEM с обычным (рациональным) EM.
+
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
'''Литература:''' [Hoffman, 2010].
+
== Оценивание качества тематических моделей ==
 +
Презентация: [[Media:Voron25ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
 +
[https://youtu.be/OoIetK1pTUA видеозапись]
-
===Разреживание и сглаживание===
+
'''Измерение качества тематических моделей.'''
 +
* Правдоподобие и перплексия.
 +
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
 +
* Разреженность и различность.
-
* ''Напоминания.'' Вероятностная тематическая модель коллекции текстовых документов. Модель PLSA и EM-алгоритм.
+
'''Проверка гипотезы условной независимости.'''
 +
* Статистики на основе KL-дивергенции и их обобщения.
 +
* Регуляризатор семантической однородности.
 +
* Применение статистических тестов условной независимости.
-
'''Разреживание'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Проблема малых тем и тем-дубликатов
-
* Гипотеза разреженности распределений терминов тем и тем документов.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
* Генерация реалистичных модельных данных.
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
-
* Принудительное разреживание в ЕМ-алгоритме. Метод [[OBD]] —- Optimal Brain Damage. Варианты реализации.
+
* Регуляризатор семантической однородности
-
* Связь разреженности и единственности матричного разложения.
+
* Подходы к балансировке тем
-
'''Сглаживание'''
+
== Тематический информационный поиск ==
-
* Модель латентного размещения Дирихле LDA.
+
Презентация: [[Media:Voron25ptm-exp.pdf|(PDF,&nbsp;9,4&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
-
* Свойства распределения Дирихле, сопряжённость с мультиномиальным распределением.
+
[https://youtu.be/lckh814p-7I видеозапись]
-
* Байесовский вывод. Сглаженные частотные оценки условных вероятностей.
+
-
* Численные методы оптимизации гиперпараметров.
+
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
'''Робастные тематические модели'''
+
'''Мультимодальные тематические модели.'''
-
* Тематическая модель с фоном и шумом.
+
* Примеры модальностей.
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
* Аддитивный и мультипликативный М-шаг.
+
-
* Эксперименты: робастная модель не нуждается в регуляризации и более устойчива к разреживанию.
+
-
'''Задание 1.3'''
+
'''Иерархические тематические модели.'''
-
Обязательные пункты: 1 и 2 или 3 и любой из остальных.
+
* Иерархии тем. Послойное построение иерархии.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Регуляризаторы для разделения тем на подтемы.
-
# Исследовать зависимость точности модели и точности восстановления от степени разреженности исходных модельных данных, для обычного и разреживающего OEM. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на точность модели.
+
* Псевдодокументы родительских тем.
-
# Реализовать робастный OЕМ. Реализовать генератор модельных данных с шумом и фоном.
+
* Модальность родительских тем.
-
# Исследовать зависимость точности модели и точности восстановления от параметров априорной вероятности шума и фона. Совпадает ли структура разреженности восстановленных распределений с исходными модельными? Совпадает ли апостериорная вероятность шума и фона с модельной? Достигается ли оптимум точности модели и точности восстановления, если параметры априорной вероятности шума и фона взять точно те же, что при генерации модельных данных?
+
-
# Исследовать влияние М-шага (аддитивный или мультипликативный) на точность модели и точность восстановления.
+
-
# Реализовать робастный разреженный OEM. Проверить гипотезу, что разреживание в робастном алгоритме приводит к лучшим результатам, чем в неробастном.
+
-
'''Литература:''' [Blei, 2003], [Chemudugunta, 2006].
+
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
 +
<!--
 +
'''Задачи тематизации текстовых коллекций'''
 +
* Проект «Мастерская знаний». Тематизация подборок научных публикаций.
 +
* Поиск этно-релевантных тем в социальных сетях
 +
* Тематизация в социо-гуманитарных исследованиях-->
-
===Методы оценивания качества вероятностных тематических моделей===
+
== BigARTM и базовые инструменты ==
-
'''Реальные данные.'''
+
''Мурат Апишев''.
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
-
* Внутренние и внешние критерии качества.
+
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
* Дополнительные данные для построения внешних критериев качества.
+
-
'''Перплексия.'''
+
'''Предварительная обработка текстов'''
-
* Определение и интерпретация перплекcии.
+
* Парсинг «сырых» данных.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Токенизация, стемминг и лемматизация.
 +
* Выделение энграмм.
 +
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
'''Статистические тесты условной независимости.'''
+
'''Библиотека BigARTM'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона. Матрица кросс-табуляции «термины–документы» для заданной темы.
+
* Методологические рекоммендации по проведению экспериментов.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Установка [[BigARTM]].
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Формат и импорт входных данных.
-
* Обобщённое семейство статистик Кресси-Рида.
+
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
-
* Алгоритм вычисления квантилей распределения статистики Кресси-Рида.
+
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
* Рекуррентное вычисление статистики Кресси-Рида.
+
-
'''Оценивание интерпретируемости тематических моделей.'''
+
'''Дополнительный материал:'''
-
* Корректность определения асессорами лишних терминов в темах и лишних тем в документах.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
-
* Визуализация тематических моделей.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
 +
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
''' Оценивание качества темы.'''
+
== Мультимодальные тематические модели ==
-
* Чёткость темы: число типичных документов темы, число типичных терминов темы.
+
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
-
* Однородность (радиус) темы.
+
[https://youtu.be/8cg334LKWdk видеозапись]
-
* Конфликтность темы (близость темы к другим темам).
+
-
'''Критерии качества классификации и ранжирования.'''
+
'''Мультиязычные тематические модели.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Параллельные и сравнимые коллекции.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Регуляризаторы для учёта двуязычных словарей.
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Кросс-язычный информационный поиск.
-
'''Усечённые распределения'''
+
'''Трёхматричные модели.'''
-
* Гипотеза об усечённых распределениях терминов тем в документах как ослабление гипотезы условной независимости.
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
-
* Явление burstiness.
+
* Автор-тематическая модель (author-topic model).
 +
* Модель для выделения поведений объектов в видеопотоке.
-
'''Задание 1.4.'''
+
'''Тематические модели транзакционных данных.'''
-
# Применить OEM к реальным коллекциям.
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
'''Литература:''' [Blei, 2003].
+
== Тематические модели сочетаемости слов ==
 +
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 8.11.2025}}.
 +
[https://youtu.be/0Yy5kH2LlEQ видеозапись]
 +
'''Мультиграммные модели и выделение терминов.'''
 +
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
 +
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
 +
* Критерии тематичности фраз.
 +
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
===Иерархические тематические модели===
+
'''Тематические модели дистрибутивной семантики.'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
 +
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
 +
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
 +
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
 +
<!--* Регуляризаторы когерентности. -->
-
'''Тематическая модель с фиксированной иерархией.'''
+
'''Позиционный регуляризатор в ARTM.'''
-
* Вероятностная формализация отношения «тема–подтема». Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Гипотеза о сегментной структуре текста.
-
* Дивергенция Кульбака–Лейблера.
+
* Регуляризация матрицы тематических векторов термов. Формулы М-шага.
-
* Несимметричность KL-дивергенции. Интерпретация KL-дивергенции как степени вложенности распределений. Оценивание силы связей «тема-подтема» KL-дивергенцией.
+
* Теорема о регуляризаторе, эквивалентном произвольной пост-обработке Е-шага.
-
'''Иерархические процессы Дирихле.'''
+
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
* Оптимизация числа тем в плоской модели. Создание новых тем в иерархических моделях.
+
-
'''Сетевые иерархические модели.'''
+
-
* Возможность для темы иметь несколько родительских тем.
+
-
* Нисходящие и восходящие иерархические модели.
+
-
===Тематические модели с выделением ключевых фраз===
+
'''Дополнительный материал:'''
-
* Задачи предварительной обработки текстов. Очистка (номера страниц, переносы, опечатки, числовая информация, оглавление, таблицы и рисунки), лемматизация, удаление стоп-слов, удаление редких слов.
+
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
* Задача выделения терминов. Основные идеи: словари терминов, морфологический анализ предложений, поиск коллокаций, машинное обучение.
+
-
* Статистические оценки неслучайности. Вывод критерия C-Value.
+
-
* Морфологический анализатор.
+
-
* Тематические модели с учётом синонимии (эффект burstiness).
+
-
===Многоязычные тематические модели===
+
== Анализ зависимостей ==
 +
Презентация: [[Media:Voron25ptm-rel.pdf|(PDF,&nbsp;2,6&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
 +
[https://youtu.be/s8Fp62lWHqk видеозапись]
-
===Распараллеливание алгоритмов обучения тематических моделей===
+
'''Зависимости, корреляции, связи.'''
 +
* Тематические модели классификации и регрессии.
 +
* Модель коррелированных тем CTM (Correlated Topic Model).
 +
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
 +
'''Время и пространство.'''
 +
* Регуляризаторы времени.
 +
* Обнаружение и отслеживание тем.
 +
* Гео-пространственные модели.
-
'''Основная литература'''
+
'''Социальные сети.'''
 +
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
 +
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
 +
* Регуляризаторы для выявления социальных ролей пользователей.
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
== Проект «Тематизатор» ==
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;8,3&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. 2009.
+
[https://youtu.be/0BEIkS3OZZY Видеозапись]
 +
 
 +
'''Примеры прикладных задач'''
 +
* Поиск этно-релевантных тем в социальных сетях.
 +
* Анализ программ развития российских вузов.
 +
* Поиск и рубрикация научных статей на 100 языках.
 +
* Тематическое моделирование в исторических и политологических исследованиях.
 +
* Проекты Школы Прикладного Анализа Данных.
 +
 
 +
'''Визуализация тематических моделей'''
 +
* Визуализация матричного разложения.
 +
* Динамика, иерархии, взаимосвязи, сегментация.
 +
* Спектр тем.
 +
 
 +
'''Анализ требований к «Тематизатору»'''
 +
* Функциональные требования.
 +
* Требования к интерпретируемости.
 +
* Основной пользовательский сценарий: загрузка, предобработка, моделирование, визуализация, коррекция.
 +
* Задача перестроения модели по экспертной разметке тем на релевантные, нерелевантные и мусорные
 +
* Этапизация работ и MVP Тематизатора.
 +
 
 +
== Именование и суммаризация тем ==
 +
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;4,6&nbsp;МБ)]] {{важно|— обновление 27.11.2025}}.
 +
[https://youtu.be/d87zESF20K8 видеозапись]
 +
 
 +
'''Методы суммаризации текстов.'''
 +
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
 +
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
 +
 
 +
'''Автоматическое именование тем (topic labeling).'''
 +
* Формирование названий-кандидатов.
 +
* Релевантность, покрытие, различность.
 +
* Оценивание качества именования тем.
 +
 
 +
'''Задача суммаризации темы'''
 +
* Задача ранжирования документов
 +
* Задача фильтрации репрезентативных релевантных фраз.
 +
* Задача генерации связного текста
 +
 
 +
== Байесовское обучение модели LDA ==
 +
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 7.12.2025}}.
 +
[https://youtu.be/Je8o6-qgb7Q видеозапись]
 +
 
 +
'''Классические модели PLSA, LDA.'''
 +
* Модель PLSA.
 +
* Модель LDA. Распределение Дирихле и его свойства.
 +
* Максимизация апостериорной вероятности для модели LDA.
 +
 
 +
'''Вариационный байесовский вывод.'''
 +
* Основная теорема вариационного байесовского вывода.
 +
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
 +
 
 +
'''Сэмплирование Гиббса.'''
 +
* Основная теорема о сэмплировании Гиббса.
 +
* [[Сэмплирование Гиббса]] для модели LDA.
 +
* GS ЕМ-алгоритм для модели LDA.
 +
 
 +
'''Замечания о байесовском подходе.'''
 +
* Оптимизация гиперпараметров в LDA.
 +
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
 +
* Сравнение байесовского подхода и ARTM.
 +
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
 +
 
 +
== Проект «Мастерская знаний» ==
 +
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|обновление 3.03.2025}}.
 +
 
 +
'''Проект «Мастерская знаний»'''
 +
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
 +
* Модель векторизации текста для поиска и рекомендаций научных статей.
 +
* Основные сервисы «Мастерской знаний».
 +
 
 +
'''Место тематического моделирования в «Мастерской знаний»'''
 +
* Сервис тематизации подборки.
 +
* Сервисы выявления научных трендов и построения хронологических карт.
 +
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
 +
 
 +
'''Карты знаний'''
 +
* Задачи иерархической суммаризации одной статьи, подборки статей.
 +
* Принципы построения интеллект-карт и карт знаний.
 +
* Что такое «тема»? Отличия тематизации и картирования.
 +
 
 +
<!---
 +
== Теория ЕМ-алгоритма ==
 +
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 25.10.2024}}.
 +
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
 +
 
 +
'''Общий EM-алгоритм.'''
 +
* EM-алгоритм для максимизации неполного правдоподобия.
 +
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
 +
* Альтернативный вывод формул ARTM.
 +
 
 +
'''Эксперименты с моделями PLSA, LDA.'''
 +
* Проблема неустойчивости (на синтетических данных).
 +
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
 +
 
 +
== Моделирование сегментированного текста ==
 +
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
 +
 
 +
'''Мультиграммные модели.'''
 +
* Модель BigramTM.
 +
* Модель Topical N-grams (TNG).
 +
* Мультимодальная мультиграммная модель.
 +
 
 +
'''Тематические модели предложений.'''
 +
* Тематическая модель предложений senLDA.
 +
* Модель коротких сообщений Twitter-LDA.
 +
* Сегментоиды. Лексические цепочки.
 +
 
 +
'''Тематическая сегментация текста.'''
 +
* Метод TopicTiling. Критерии определения границ сегментов.
 +
* Критерии качества сегментации.
 +
* Оптимизация параметров модели TopicTiling.
 +
--->
 +
 
 +
=Отчетность по курсу=
 +
Условием сдачи курса является выполнение индивидуальных практических заданий.
 +
 
 +
'''Рекомендуемая структура отчёта об исследовании:'''
 +
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
 +
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
 +
 
 +
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
 +
 
 +
=Литература=
 +
 
 +
# ''Воронцов К. В.'' [https://urss.ru/cgi-bin/db.pl?page=Book&id=305674 Вероятностное тематическое моделирование: Теория регуляризации ARTM и библиотека с открытым кодом BigARTM]. Москва, URSS. 2025. ISBN 978-5-9710-9933-8.
 +
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
 +
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
 +
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
'''Дополнительная литература'''
'''Дополнительная литература'''
-
# Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование 2012 Т. 4, №12. С 693–706.
+
 
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. С. 657–686.
-
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. MIT Press, 2006.Vol. 19. Pp. 241–248.
+
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
-
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B.1977.no. 34.� Pp. 1–38.
+
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
+
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. MIT Press, 2006. Vol. 19. Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
 +
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. 1977. no. 34. — Pp. 1–38.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
-
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval.2011.Vol. 14, no. 2.Pp. 178–203.
+
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. 2011. Vol.14, no.2. Pp. 178–203.
-
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. 2009.Pp. 1973–1981.
+
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
-
# Zavitsanos E., Paliouras G., Vouros G. A. Non-parametric estimation of topic hierarchies from texts with hierarchical Dirichlet processes // Journal of Machine Learning Research. — 2011. — Vol. 12.— Pp. 2749–2775.
+
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
 +
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. 2009. Pp. 1973–1981.
 +
-->
-
{{well|
+
= Ссылки =
-
Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 500 КБ]] {{важно|(обновление 22 марта 2013)}}.
+
* [[Тематическое моделирование]]
-
}}
+
* [[Аддитивная регуляризация тематических моделей]]
 +
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
-
{{Stub}}
+
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
 +
 
 +
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

До 2026 года курс назывался «Вероятностные тематические модели».

Вероятностные языковые модели (probabilistic language model) выявляют закономерности в строении текста, чтобы предсказывать появление каждого следующего слова. Чем лучше модель понимает строение языка, тем точнее предсказания слов, тем более она полезна в задачах анализа текстов, информационного поиска (IR, Information Retrieval), обработки естественного языка (NLP, Natural Language Processing), понимания естественного языка (NLU, Natural Language Understanding).

Наиболее подробно в курсе изучается вероятностное тематическое моделирование (Probabilistic Topic Modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, создавать системы семантического разведочного поиска (Exploratory Search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. Развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (ARTM). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Желательно знание курсов математической статистики, методов оптимизации, машинного обучения, языка программирования Python.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Обзор вероятностных моделей языка

Частотные модели.

  • Текстовые данные. Гипотеза «мешка слов». Принцип максимума правдоподобия.
  • Условия Каруша–Куна–Таккера. Частотные оценки вероятности слова в текстовой коллекции, в текстовом документе.
  • Токенизация; n-граммы, коллокации, словосочетания, термины. Алгоритм TopMine.
  • Перплексия.
  • Эмпирические законы Ципфа и Хипса.
  • Модели релевантности текста TF-IDF, BM-25, PageRank, TextRank.

Модели семантических векторных представлений.

  • Вероятностное тематическое моделирование.
  • Дистрибутивная семантика. Модель word2vec. Модель FastText.

Нейросетевые модели языка.

  • Нейрон и нейронные сети.
  • Модель машинного перевода. Модель внимания. Архитектура трансформера. Кодировщик и декодировщик.
  • Критерии обучения в машинном переводе.
  • Критерий маскированного языкового моделирования для обучения кодировщика. Модель BERT.

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 2.10.2025. видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 2.10.2025. видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 9,4 МБ) — обновление 21.10.2025. видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Мультимодальные тематические модели

Презентация: (PDF, 1,8 МБ) — обновление 21.10.2025. видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,5 МБ) — обновление 8.11.2025. видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация матрицы тематических векторов термов. Формулы М-шага.
  • Теорема о регуляризаторе, эквивалентном произвольной пост-обработке Е-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Анализ зависимостей

Презентация: (PDF, 2,6 МБ) — обновление 27.11.2025. видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Проект «Тематизатор»

Презентация: (PDF, 8,3 МБ) — обновление 27.11.2025. Видеозапись

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Тематическое моделирование в исторических и политологических исследованиях.
  • Проекты Школы Прикладного Анализа Данных.

Визуализация тематических моделей

  • Визуализация матричного разложения.
  • Динамика, иерархии, взаимосвязи, сегментация.
  • Спектр тем.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: загрузка, предобработка, моделирование, визуализация, коррекция.
  • Задача перестроения модели по экспертной разметке тем на релевантные, нерелевантные и мусорные
  • Этапизация работ и MVP Тематизатора.

Именование и суммаризация тем

Презентация: (PDF, 4,6 МБ) — обновление 27.11.2025. видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Байесовское обучение модели LDA

Презентация: (PDF, 1,7 МБ) — обновление 7.12.2025. видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: Теория регуляризации ARTM и библиотека с открытым кодом BigARTM. Москва, URSS. 2025. ISBN 978-5-9710-9933-8.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024
Личные инструменты