
PerforatedCNNs:
Acceleration	through	Elimination	of	

Redundant	Convolutions	

Michael	Figurnov,	Dmitry	Vetrov,	Pushmeet Kohli

21.03.2016

VGG-16	convolutional	network

• Impressive	performance	for	vision	problems	
(image	classification,	segmentation)

• 300	ms per	image	on	a	quad-core	CPU
– Too	slow	for	real-time	processing	without	GPU

• 15	billion	multiplications	per	image
– Too	power-demanding	for	mobile	devices

K.	Simonyan,	A.	Zisserman.	“Very	Deep	Convolutional	Networks	for	Large-Scale	Image	
Recognition”.	ICLR’15

Convolutional	layer

>80%	of	computation	of	CNNs!

http://cs231n.github.io/convolutional-networks/

Related	work:	tensor	decomposition

• Decompose	convolution	into	a	sequence	of	
convolutions	with	lower	total	complexity

X.	Zhang,	et	al.	"Accelerating	
Very	Deep	Convolutional	
Networks	for	Classification	
and	Detection.”	TPAMI’15

Related	work:	lower	precision

• Can	use	16	bit	floats	(instead	of	32	bits)	with	
no	degradation	of	accuracy

Gupta	et	al.	“Deep	Learning	with	Limited	Numerical	Precision.”	ICML’15

• Current	area	of	research:	binary connections
Courbariaux et	al.	“BinaryConnect:	Training	Deep	Neural	Networks	with	
binary	weights	during	propagations.”	NIPS’15
Rastegari et	al.	“XNOR-Net:	ImageNet Classification	Using	Binary	
Convolutional	Neural	Networks”	arxiv’16

Related	work:
group-wise brain	damage

• Reduce	the	spatial	size	of	the	convolutional	
kernels	in	a	smart	way

• Use	3x3	kernel	for	some	input	channels,	1x1	
for	others

V.	Lebedev,	V.	Lempitsky.	"Fast	convnets using	group-wise	brain	damage."	arXiv’15

Loop	perforation

float sum = 0;
for (int i = 0; i < N; i++) {

sum += a[i];
}
float mean = sum / N;

float sum = 0;
for (int i = 0; i < N; i += 2) {

sum += a[i];
}
float mean = sum / (N/2);

Trading	accuracy	for	speed

S.	Misailovic, D.M.	Roy, andM.C.	Rinard. Probabilistically	accurate	program	transformations.	In	
Static	Analysis,	pages	316–333.	Springer,	2011

S.	Misailovic,	S.	Sidiroglou,	H.	Hoffmann,	and	M.	Rinard.	Quality	of	service	profiling.	In	
Proceedings	of	the	32nd	ACM/IEEE	International	Conference	on	Software	Engineering-Volume	1,	
pages	25–34.	ACM,	2010

Perforated	convolutional	layer

• Goals:
– Small	decrease	of	the	network’s	accuracy
– Possibility	of	efficient	implementation

• Outputs	of	convolutional	layers	are	spatially	redundant
• Perforated	convolutional	layer:

– Calculate	the	outputs	a	convolutional	layer	in
a	subset	of	spatial	positions

– Interpolate	the	missing	values	using	nearest	neighbor

• Why	does	this	work?
– ReLU and	max-pooling	ignore	most	values	in	the	network

Perforated	convolutional	layer

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55 -4000

-3000

-2000

-1000

0

1000

2000

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55
-4000

-3000

-2000

-1000

0

1000

2000

Input	image Convolutional	 layer

Perforated	conv layer	(4x	faster)Perforation	mask

5 10 15 20 25

5

10

15

20

25

0

500

1000

1500

2000

5 10 15 20 25

5

10

15

20

25

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ReLU +	pooling

ReLU +	pooling

Efficient	implementation

!"#

$%&′

tensor U data matrix M

&

$!
!
#

#

im2row

kernel K tensor V

× =

*
&′

X′

*

!"#

*
1

1

Perforation	=	skipping	rows	of	data	matrix	M
Interpolation	is	performed	implicitly	in	the	next	layer’s	im2row

“Caffe-style”	convolution:	reduction	to	matrix	multiplication

Pros	&	cons

+		Less	computation:	smaller	data	matrix
+		Efficient:	50-100%	of	theoretical	speedup
+		Less	memory:	fewer	activations	to	store
+		Works	well	with	subsequent	1x1	convolutions
+		Does	not	change	architecture	of	the	network
+		Mask	can	be	dynamically	adjusted – future	work

- Requires	custom	implementation
- Need	to	choose	the	perforation	masks

Baseline	perforation	masks

Grid

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

Uniform

Similar	to	increasing	the	stride	of	convolution

Pooling	structure	perforation	mask

Weights

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25
1

2

3

4
Mask

Weight	is	the	number	of	times	the	position	is	used	in	the	next	pooling	layer

AlexNet conv2:	followed	by	3x3	pooling	with	stride	2

Output	positions	are	not	equally	important!
How	can	we	measure	their	impact?

Impact	perforation	mask
• Estimate	relative	importance	of	spatial	positions	for	the	loss	

(possibly	for	a	perforated	network!)
• First-order	Taylor	expansion:
L(V) – loss	as	a	function	of	outputs	of	convolutional	layer	V
V’	is	V with	position	(x0,	y0,	t0) replaced	with	zero

Aggregate	over	channels:

Per-image	impacts	G(x,	y;	V)
for	AlexNet conv2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

0.05

0.1

0.15

0.2

0.25

0.3

Impact	perforation	mask

Weights Mask

• After	averaging	impacts	over	the	training	dataset
(for	an	already	perforated	network)	

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

• Already-perforated	positions	have	zero	weight
• Iterate	between	increasing	perforation	and	recalculating	weights

Perforating	multiple	layers

• Greedy	algorithm
• NLL is	class	negative	log-likelihood,
t is	network	evaluation	time

• Iteratively	perforate	the	layer	with
the	minimal	value	of
the	cost	function

• Surprisingly,	this	cost	function	is
much	better	than	

NLLn − NLL0
t0 − tn

NLLn − NLLn−1
tn−1 − tn

GPU speedup (times)
1 1.5 2 2.5 3

To
p-

1
er

ro
r (

%
)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Optimal
Greedy

GPU speedup (times)
1 1.5 2 2.5 3

To
p-

1
er

ro
r (

%
)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Optimal
Greedy

Experiments

What	is	the	best	perforation	mask?

CPU speedup (times)
1 2 3 4 5 6

To
p-

5
er

ro
r i

nc
re

as
e

(%
)

0

2

4

6

8

10
Uniform
Grid
Pooling structure
Impact

GPU speedup (times)
1 2 3 4 5 6

To
p-

5
er

ro
r i

nc
re

as
e

(%
)

0

2

4

6

8

10

Conv2	layer	of	AlexNet,	no	fine-tuning

Comparison	with	state-of-the-art
Conv2	layer	of	AlexNet,	after	fine-tuning

V.	Lebedev,	V.	Lempitsky.	"Fast	convnets using	group-wise	brain	damage."	arXiv’15
M.	Jaderberg,	A.	Vedaldi,	A.	Zisserman.	"Speeding	up	convolutional	neural	networks	with	low	rank	
expansions."	BMVC’14
V.	Lebedev,	et	al.	“Speeding-up	Convolutional	Neural	Networks	Using	Fine-tuned	CP-Decomposition.”	
ICLR’15
E.	Denton,	et	al.	"Exploiting	linear	structure	within	convolutional	networks	 for	efficient	evaluation."	
NIPS’14

Baseline	strategies	(CIFAR10	NIN)

CPU speedup (times)
1 2 3 4

To
p-

1
er

ro
r (

%
)

10.5
11

11.5
12

12.5
13

13.5
14

14.5
15

CPU speedup (times)
1 2 3 4

To
p-

1
er

ro
r (

%
)

10

20

30

40

50

60
Resize
Stride
Frac. stride
Grid
Impact

Original	network After	retraining

Resize:	smaller	input	image
(Frac.)	Stride:	increase	stride	of	convolutions
Grid	&	Impact:	perforation

ImageNet networks	results

Future	work

• Data-dependent	perforation	masks
– Hard	attention
– Tricky	to	tune

• Perforation	+	elimination	of	cross-channel	
redundancy

X.	Zhang,	et	al.	"Accelerating	Very	Deep	Convolutional	Networks	for	Classification	
and	Detection.”	TPAMI’15

0

0.05

0.1

0.15

0.2

0.25

0.3

Conclusion

• Modern	convolutional	networks	are	redundant
• PerforatedCNNs exploit	spatial	redundancy	to	
decrease	the	computational	cost	and	the	memory	
consumption
– 2x	faster	VGG-16,	1.7x	less	memory,
1.1%	increase	of	top-5	err

• Architecture	of	the	network	is	not	changed
– Same	parameters,	same	intermediate	activations
– Easy	to	combine	with	other	acceleration	methods

Questions?
More	details:	ICLR’16	workshop	paper	

http://arxiv.org/abs/1504.08362
Code

https://github.com/mfigurnov/perforated-cnn-matconvnet
https://github.com/mfigurnov/perforated-cnn-caffe

