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L gegmentation
L Snake models

Active contour, snake models

o [lapameTpusyemM KOHTYp CErMeHTa HEKOTOPOIi KpUBOIi,
MUHUMU3UPYEM SHEPTUIO.

1

E(C)=a /0 Ene (C (p)) dp+ /0 Eimg (C(p)) dp7 /0 Evee (C (p)) dp.

o Eine = a|Co(p)[? + B|Cpp(p)|, rnaakocTs, perynsipusauus.

o Eimg = wil(C(p)) — w2|VI(C(p))|, BbIKNaALIBAET KOHTYP MO
XEeNaeMbIM CBOCTBaM.

o FE.t NCNONL3YETCSA ANSA 3a4aHUS APYTUX OrpaHUYeHNiA.

e balloon models, region snakes, etc. ..
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L The Level Set Method
Level Sets

P(x,y,t)

o Kontyp C(t) 3afaeTcsi HESIBHO: HY/NEBbIM YPOBHEM DyHKLUMN

Clp,t) = {(x.y): ¢(x,y,t) =0}, ¢(C(t),1) =0

° MOAeJ’Ib N3MEHEHUNA KOHTYpaA:

9 = Fn.
e Torpa nonydaem crefytouiee ypaBHeHNeE:

¢t = _F|V¢|-
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L The Level Set Method

Geodesic active contours, edge-driven case

e CBsa3b co snake model

t1ac
E[C :a/ —
[C(p)] | 9p (p)
e Strong image gradients g(x, y)
[ )

dp+ /0 ¢(C(p))dp

1
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L The Level Set Method

The region-driven case. Mumford-Shah framework

o KycouHo-koHcTaHTas(rnagkas) mogens n3obpaxkeHus:

E(C,u) = a//Q(I — u)dw + B|C| +7//Q_C IV ul2dw.
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Segmentation

Using model-based image segmentation

(f, /3) = arginf E4(T, B) + A& (T)
r,8
Iteratively repeat

e Geometric reconstruction for I' (alternating split Bregman solver and
convex relaxation);

e Photometric reconstruction for 5 (MLE in exponential family, Fisher
scoring algorithm);
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L Uncertainty

Problem
We want to:
e identify regions, where we are less confident about segmentation,

e estimate confidence intervals for segmentation boundary.
For fixed o (= 0,05) find R, such that

P{VXEB,XE?%a}:l—a.
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Segmentation

Problems:

e alternating process,

e no accurate upper bound for geometric solver,
e only lower bound for variance of MLE,

e we are working with pixels, not the boundary.
We have some idea about the uncertainty in 3.
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What we can do?

e MLE is asymptotically normal(under some conditions).

e Estimate variance of MLE using Fisher information matrix Z.

var(0) > Z71(9)

e Since we are working with statistics over pixels in the regions, not on
the boundaries, it is reasonable to use & ~ o2 in 2D case.

Use normal approximation and propagate error of Region Statistics Solver
at each step through the whole process.

By = Bumie + ®so — Geometric solver: ['(8y) — Ry

B = Buie — ®a0 — Geometric solver: [(f_) — R_
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Examples

Geometric solver is biased due to the

Truth

Estimated

Estimated

Estimated

sharp corners.

[m]
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[ Uncertainty quantification of segmentation

Examples

Pixels of objects, that are not in the confidence interval

Mean (500 trials) NPXeleuside 1 — 0,0118.

Np’Xelsin objects

SNR =15 PSF, =2 PSFuigh =9 o« =0.0001
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I—Estimating orientation field

Main concept
Estimate gradients, using linear regression.
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L

Estimating orientation field

Main concept

e Taking window too small leads to high sensitivity,
e too wide window adds bias.
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I—Eitimating orientation field

2D images

e At each pixel take weighted neighborhood of size M x M.
e Robustly fit 2D plane with IRLS.
Parameters:
e neighborhood size,
e weight function,
e robustness coefficient,
e “sharpness” of gradients.

Too much smoothing can blur sharp edges.

=] F = = £ DAl
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Estimating orientation field

Example
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I—Pluuing in orientation prior
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I—Amsotropic local geometric prior

I—Plugzmg in orientation prior

e Length prior

Extending &, to include local anisotropic priors

/dS—TVlQ

e Geodesic active contour prior

||V].Q||2dX
&I Z/rwb(s)ds: TV, (1a)" = /

(x)[[V1gll2dx
Q
See Bresson et al. 2007
e Finsler active contours

(M) = /r wi(x, F)ds" = " 77
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I—Anisotropic local geometric prior

I—Plugzing in orientation prior

Defining the form

Nemitz et al.(2007), Casells (2009).

Q

E(M) = [ ¢(x,Vig, d)dx,
Ellipsoid Wulff shapes

¢ = sup (VM, q)
qeW,

Ws = {x e R? [ ||xllc,, = | Gaxll2 < 1}

Generalized co-area formula holds

5,(r)“:"/Q )cx—ql v19H2dx
1

Exact convex relaxation possible by thresholding. Olson, Byrod et al.

(ICCV 2009).
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I—Anisotropic local geometric prior

I—Plugging in orientation prior

Explaining well known priors

e Length prior

Wi (xq) = {x € RY [ [|x]|2 < 1}
— independent of xg.

e Geodesic active contour prior

We(xq) = {x € R? | [Ix]|2 < g(xq) }
Waulff shape.

— smoothing varying in space. Edge indicator controls volume of the

Da
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I—Plugging in orientation prior

Convex relaxation:

lo(x) € {0,1} — M(x)€]0,1].

On the relaxed problem use alternating split Bregman:

M5 = arg min ||b:’f + K[M] — W1k||§+Hb§ +VM - W3l»(||z+Hb§ +M-
M

wi;
wit = arg min(1, E(wy)) + % ||bf + K [Mk+l] - Wl”i

1
ws ™t = argmin Ap(wa) + > | b5 + VM<FL — W2H§
wa
it

= arg min L[071](W3) + 2i Hbé + M- W3H§
w3 ’Y

Update b1 pkt1 pktl

o>
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I—Plugzing in orientation prior
!

Solve Vx € Q,

argmin Ayd(wa(x)) + = ||b2 + VMR (x) — wa(x
weRd

%) =
= proxa,,w, (b2 (x) + VI\/IkH( ))

b5(x) + VM L (x)

k k+1
3ol (b (x) + VM<+L(x)

Xy ) '
Main computational task is Euclidian projection on the Wullf shape
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I—Plugging in orientation prior
.
No closed form solution for projecting point on ellipse.

Projections on rectangle and ellipse
*

Using iterative method(2-6 iterations).

David Eberly “Distance from a Point to an Ellipse in 2D”

[m]
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I—Anisotropic local geometric prior
L Results

Proof of concept

SNR =4 PSF, =3 PSFigqn =9

[m]
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L Results

Proof of concept

Without local orientation prior With local orientation prior

Membership mask. Orientations estimated using unnoised image.

SNR =4 PSF, =3 PSF ignh =9
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L Results

Enhancing corners

SNR =45 PSF, =2 PSFyigmn =9
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L Results

Enhancing corners

Better corner detection.

Without local orientation prior With local orientation prior
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Avaraged membership mask.

SNR =45 PSF, =2 PSFyigmn =9
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L Results

Segmenting extremely noisy images

Initial image

SNR =08 PSF, =3 PSFign =29

[m]
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L Results

Segmenting extremely noisy images

Orientation prior makes it possible to segment noisy images.

Without local orientation prior With local orientation prior

0.9
0.8
0.7
06
05
04
(’j 0.3
02
0.1

Membership mask.

SNR =0.8 PSF, =3 PSFigh =9
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I—Anilotropic local geometric prior
L Results
.

Segmenting extremely noisy images

Initial image

SNR =0.6 PSF, =3 PSFyign =9

[m]

=
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L Results

Segmenting extremely noisy images

Orientation prior helps to reveal the structure of noisy images.

Without local orientation prior With local orientation prior

0.9
0.8
07
06
05
04
03
0.2
01

Membership mask.

SNR =0.6 PSF, =3 PSFignh =9
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- Conclusions

What had been done.

e Implemented trivial approach for estimating confidence intervals of

the segmentation.
e Implemented algorithm for local orientation estimation.
e Improved segmentation of sharp corners.

e Local geometric prior helps to segment noisy(SNR < 1) images.
What could be improved.

e Estimate orientations more robustly.

o Use orientation priors only near sharp corners.

o>
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