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Abstract

In this paper we address the problem of finding the most prelstaite of discrete
Markov random field (MRF) with pairwise terms of a specialayphich we refer
to as “selfish”. Selfish potentials allow us to use a novel typRIRF decompo-
sition to a number of solvable subproblems with the samefssbaes and edges
but binary variables. We call the proposed framework Graggsétving Label
Decomposition (GPLD) and prove that the GPLD lower boundjisa¢to the so-
lution of the standard LP-relaxation of the initial problefine special structure of
GPLD makes it possible to take into account the desired ¢jjotogoerties of the
solution, e.g. constraints on various linear combinatiohslass indicator vari-
ables. We provide the comparison of our method with statéefart algorithms
both in terms of accuracy and speed.

1 Introduction

The problem of efficient Bayesian inference arises in mampliegy domains, e.g.in machine learn-
ing, computer vision, decision-making, etc. One of the nmasiguing problems is the development
of approximate inference algorithms for problems that aPeldrd in general. An important particu-
lar case is the MAP-inference problem in cyclic discrete kdarandom fields (MRF) with energies
that can be represented via sum of unary and pairwise terms.

LetG = (V, &) be an undirected graph withand€ being the sets of nodes and edges, respectively.

With each node we associate a class labet {1,..., P}. The MAP-inference problem can be
formulated as an energy minimization problem
0;(t;) + 0;i(ti t;)— min . 1
D 05+ 3 btity) =, min, (1)
Jev) (3,5)€E

where unary potentialg; (¢;) and pairwise potentialg;;(¢;,¢;) are some known functions of dis-
crete argument.

Although NP-hard in general problem (1) can be solved exéatbolynomial time in several spe-
cial cases. One example is dynamic programming approadhfdfiinference in tree-structured
graphs. Another example is MRFs with outer-planar grapBE [r more generally MRFs with low
treewidth [8]. Min-cut/max-flow algorithms can efficientyplve the MAP-inference problem on
arbitrary graphs when all the variables are binary and thevige potentials meet submodularity
constraint [4, 6].

9@‘(0,0)-%9@(1,1) < Hij(O,l)—i—H,-j(l,O). (2)

*The authors assert equal contribution and thus joint firtaship.



When the submodularity property doesn't hold one can usdmtia pseudo-boolean optimization
algorithm (QPBO) to get a lower bound on the minimum of enéfgdy This lower bound is known
to equal the solution of the LP-relaxation of the binary peo[12].

Advanced approximate methods based on MRF decompositienegently appeared [14]. The
most popular method, tree-reweighted message passing XTEN5, 7], splits the MRF with cy-
cles into a number of acyclic subgraphs (trees) and, for &aeh inference is made independently
with the subsequent harmonization of the optimal solutigkithough being able to solve discrete
subproblems exactly tree decomposition methods are knowartverge to the solution of the LP-
relaxation of the initial problem at their béstThe other decomposition methods [15, 1] exploit
similar ideas. Unlike more efficient approximate energyimimation algorithms, e.g. [3], decom-
position framework makes it possible to take into accountesglobal properties of the solution, in
particular to establish constraints on the areas of cld43e9)].

In this paper we address the MAP-inference problem withwiaé potentials of a special kind
which we call “selfish” since they care ( either attract oruisp) the neighbors of the same class
returning zero otherwise. Selfish potentials allow us tdgrer the decomposition to a number of
binary subproblems that correspond to different classdsembased on the set of nodéand the
set of edge¥. These subproblems are NP-hard in general but we can use @RBfthm to get
the solution of their LP-relaxation. We prove that the hamimation of subproblems’ solutions via
dual decomposition provides the LP-relaxation of the d@hitiroblem. We show that our algorithm
generally converges faster than TRW algorithm which is 8ase the dual decomposition (DD-
TRW) and provides better lower bound that TRW-S in the preserfi repulsive pairwise potentials.
We refer to the new type of decomposition as graph presetabe decomposition (GPLD). GPLD
also allows us to take into account the preferences on amydf/global linear statistics of the class
indicator variables in a straightforward manner.

The rest of the paper is organized as follows. In the nexiaeaete present GPLD framework
and prove the equivalence of GPLD and LP-relaxation lowembis. The way of taking into ac-
count some global conditions on the desired solution isudised in section 3. We present some
experimental results in section 4.

2 Graph Preserving Label Decomposition

2.1 Decomposition of standard MRFs with selfish pairwise pa@ntials
Consider the indicator parametrization of (1) obtained stallishing auxiliary binary variables
Y = {y;p} € {0,1}V%F:
R 1) tj =D,
Yir = 0, otherwise

Denoted;(p) = 6, andb;;(p, q¢) = 0:j.pq = 65i,qp- Then problem (1) takes the form of

P P
EY)= Z Z OipYsp + Z Z Oij.pa¥iYiqa — H{}nv 3)
JEV p=1 (i,5)€E pyq=1
P
S't'yjp € {Oa 1}7 Zyjp =1 (4)
p=1

We denote sefY” | y;, € {0,1}} by £ and sef{Y" | 25:1 yip =1, Vj €V} byg.

In what follows we consider selfish pairwise potentials, $i&ch ones that

eijmq = Cijm(qua (5)

The popular TRW-S algorithm does not have this property amarantees the convergence only to a
coordinate-wise maximum of the lower bound



whered,, = 1iff p = ¢q. Then we may rewrite energy (3) as follows

P
2in, B(Y) = min, (Z%W 2 CH) >
p=1 \jeV (i,5)€€

p
max {/nel% <Z O5pYip + Z CijpYinYip + Z Aj <Z Yip — 1)) =
p=1

JEV (i,)€E JEV

P
max § D min <Z(9jp + A+ D Cij,pyipyjp> -0

p=1 JEV (i,)€E JEV

Hence we obtained a decomposition of the initial problerf? ubproblems each corresponding to
a single class.

2.2 Reduction to solvable subproblems

Note that if all parameter§';; ,, were non-positive the subproblems of (6) could be solvedyeas
using min-cut algorithms since their energies would be sadtar. This forms the basis of recently
proposed submodular decomposition method (SMD) [10]. Hew& general case these subprob-
lems are still NP-hard. Consider a single subproblem whichesponds to label. We may rewrite

it as a linear function by adding new variablgs

}IPEHE <Z(9JP + Aj)yjp + Z Cij, pyw%p) = I)T/nél <Z(9jp + Aj)yjp + Z Cij,pziij)
JEV (i,5)€E Jjev (i,5)€E
Q)
St Yips Zijop € {01}, Zijpp < Yips Ysps Zigpp = Yip + Yip — 1. (8)

Removal of integrality constraints with non-negativitynditions onY’, Z yields linear program-
ming problem.

Z(ew + Aj)Yjp + Z CijpZijpp = mlg 9)
JjEV (1,7)€€
S.t. Yips Zij,pp € [07 1]7 Zij,pp > 07 Zij,pp < Yip, Yjp> Zig,pp > Yip + Yjp — 1. (10)

Lemma 1 Problem (9) with the congtraints (10) is equivalent to problem (9) with the following
constraints

Yip + Yip = 1 Yip, Yibs Zij,pp» Zij,pps %ij,pps “ij,pp = > 0 (11)

Zijpp + Zijpp = Yipy Zijpp t %ij 5 = Yip> Zigwp T Zigp = Yips Zigpp T Zigep = Yjp (12)

The proof requires consideration of the sign(@f ,. In the case of negativ€;; , the constraints
(11), (12) implyz;; »p < min(y:p, y;p). In the case of positive’;; , the constraints (11), (12) imply
zijpp = Yip + yjp — 1. On the other hand after finding the solution of (9), (10) we/mlavays set

Zijpp = Yip — Zijppr Zij.pp = Yip — Zij.pps %ij.pp = Zij.pp + 1 — Yip — Yjp. Itis straightforward to

show that all constramts (11) (12) are satisfied.

Note that minimum of (9) w.r.t. (11), (12) can be found effitig using quadratic pseudo-Boolean
optimization (QPBO). Formally QPBO computes only the valfiminimum and assigns either zero,
one, or “don’t know” toy;,. However it can be shown [2] that “don’t know” answers cop@sd to
vip = 0.5 (so-called half-intergrality property) in the solution(@) and the missing values of; ,,
can be easily revealed using lemma 1 and (10):

i min(Yip, Yjp) Cijp < 0, (13)
’ max (0, yip + yjp — 1), oOtherwise
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Finally we may establish a lower bound on lower bound (6)

P
max Inin <Z(9jp )+ Y Cz‘j,pyz‘pyjp> =

p=1 jev (3,9)€€ Jev

P
i Z Y%lei%_o)<2(9jp + Aj)¥ip Z Cij,pzij,pp> - Z Aop =
p=1"' JEV

(i,5)€E jev

max Y%lé%O)E (Y, Z,A) ;)\ = mAax(I)(A) (14)
j

where each subproblem is solvable. Note that with respetidaver bound (14) is piecewise linear
concave function and hence can be maximized e.g. by sulegrtzaicent.

2.3 Convergence to LP relaxation bound
GPLD allows to get a lower bound on the solution of discrebpegm (3), (4). In SMD it was

possible to optimize directly (6) and it was proven that isdimum equals to the solution of the
LP-relaxation of the initial problem

Z Z ejl)pr + Z Z 91_} pq?ij,pqg —7 mln (15)

JjeV p=1 (i,5)€€ pra=1
K K
S Yjp, Zijpg = 0, Zyjp =1, Z Zij.pg = Yips Zzijmq = Yjq- (16)
p=1 g=1 p=1

In GPLD one can optimize weaker lower bound (14). Nevergeelee following statement holds.

Theorem 1 The maximum of GPLD lower bound (14) equals to the minimum of LP-relaxation of
energy (15), (16).

Due to the lack of space we provide just a short sketch of thefpConsider\’ = arg max ®(A).
Among the argmins of (Y, Z, AY) there existgY?, Z%) such that® € G. It suffices to show that

. . K K
we may always findZ' > 0 such thatalk}; , satisfy (13),5°,2, 2}; .o = Uiy Dpe1 20 pg = Uiy

andE(Y?, Z° A%) = E(Y?, Z1, AY). In the proof we provide a constructive algorithm that bsild
suchZz!.

3 Global constraints

The graph preserving label decomposition has several talyas over state-of-the art (wide)tree-
based decompositions. Since we deal with label indicatoabkesy;, we may establish any kinds
of constraints on linear functions of these variables

P
ZZw%yjp:cm, m=1,...,M a7
jEV p=1

P
S by <dt, k=1,... K. (18)
jeV p=1

Thenpt" subproblem takes the form of

M
Ygléﬁ())(%;(@]p + A5+ Z Pm Wy, + Z nkv]p Yjp + Z Cij p2ij, pp> (29)
J

m=1 k=1 (i,7)€€

where A, M, and K > 0 are Lagrange multipliers with respect to which one perfofarther
projected subgradient ascend. Note that the subprobletifi o$vable by QPBO.
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Figure 1: (a) shows the estimate of the duality gap agaitmstdte of repulsive pairwise potentials.
Solid line shows the mean value, dashed lines show one sthddeiation from the mean value. (b)
demonstrates the average lower bound on energy 1 obtain€Php (red), TRW-S (blue), DD-
TRW (green) vs. number of iterations. The vertical axis datks the gap between the current lower
bound and the solution of the LP-relaxation. The value ofghp between the integer solution
obtained by TRW-S and the exact solution of the LP-relaxatibtained using an interior point
solver is set to 100. The horizontal axis shows the currerdtion number. (c) shows the percentage
of generated problems against the accuracy (the differbateeen the lower bound and the LP-
relaxation) achieved within 5000 iterations. The horizd@ixis is in the logarithmic scale and its
units correspond to the units of the vertical axis of plot (b)

Theorem 2 Maximin

M K
J m= =

equalsto the solution of LP problem (15), (16)with additional constraints (17), (18).

The proof is similar to the proof of theorem 1. The only diéface is tha® also satisfies (17)
and (18).

4 Experiments and discussion

Evaluation of the primal-dual gap w.r.t. the rate of non-submodular terms. The “complexity”

of problem (1) greatly depends on the relations betweenggrnearameters. It has been shown
(e.g. [5]) that in the presence of both attractive and répeilpairwise potentials the duality gap
(and consequently the “complexity” of the problem) growshathe increase of relative strength
of pairwise potentials. Here we explore another importantdr — the fraction of repulsive Potts
potentials, i.e. the ones whetg; ,, > 0. Figure 1a shows the estimate of the duality gap against the
rate of repulsive potentials to all pairwise potentials.efsure the reproductivity of this result we
estimate the duality gap using TRWS-S meth&dr each rate of repulsive potentials we generate
20 toy problems:50 x 50 grid, 10 labels, unary potentials are generated fraff0, 1), pairwise
potentials are generated as absolute value&’@, 2) with subsequent sign switch of the given
fraction of randomly chosen potentials. Figure 1a showsttielargest duality gap appears when
20-30% of pairwise potentials are repulsive.

Comparison with TRW-S and DD-TRW. In this section we compare the performance of TRW-
S, DD-TRW, and GPLD on a set of 100 syntectic problems geeériatthe same setup described
in the previous section. The rate of repulsive potentialseist at the level of 30%. For TRW-S
method we use the author’s original code. In DD-TRW we deamsephe grid into vertical and
horizontal chains. As for subgradient optimization botiD-TRW and GPLD we've selected an
adaptive scheme that was recommended in [7, eq. 41] comiitiefurther switch to non-adaptive
diminishing step size rulea; = % that gives theoretical guarantees of the convergence to the
optimum. Here positive constantis a parameter of the algorithm amds the current iteration
number.

Plot 1b shows the averaged performance of GPLD, TRW-S, andfBWY against the number of
iterations. Plot 1c shows the fraction of problems wheregilien method achieved the given level
of accuracy within 5000 iterations. We observe that TRW-8nghthe best performance in the
beginning but gets stuck in a coordinate-wise maximum, isegenerally unable to converge to

2\We used the original authors code published on http://suad.at/ vnk/papers/TRW-S.html
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Figure 2: Results for the image segmentation problem. (aitialiimage with seeds; (b) — the result
of TRW-S; (c) — result of GPLD; (d) — the result of GPLD with gkl constraints on label areas.

the LP lower bound. GPLD shows the ability to achieve higloeusaacy in reasonable time. Poor
performance of DD-TRW can be explained by the fact that theedisionality of the dual space is
P = 10 times larger than the dimensionality of GPLD’s dual spaceother possible explanation
is that our way of decomposing the grid into trees may notogltiand implies slow convergence.

Image segmentation with non-submodular pairwise terms andjlobal constraints. To show the
effect of global linear constraints on indicator variabhsconstruct an energy to segment artificial
image 2a with user provided seeds. Identical colors of albjgeds and background make color-
based unary potentials useless and therefore unariesrcomig seed information and small bias
to background class. Pairwise potentials are set to dtteaBbtts potential€’;;, = —C < 0

at the edges with low contrast and to repulsive Potts patlsrd;; , = C at the edges with high
contrast. The contrast threshold is set to 25 (black colsiitansity 0 and white color has intensity
255). In this setting the energy is “complex”, because tharypotentials are weak and the pairwise
potentials are both repulsive and attractive. Figures Zhaow that both TRW-S and GPLD cope
with the problem poorly i.e. provide very fragmented segeatibn. Figure 2d shows the result of
GPLD with global constraints on objects’ areas which wetdséheir right values.

Conclusion. Our experiments show that GPLD outperforms DD-TRW in timel &RW-S in
accuracy in the “complex” cases when there are both repubsid attractive pairwise terms. A
possible direction for the future work would be to apply grapalgorithms [12] which yield tighter
relexations for binary subproblems (7).
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