
Министерство образования и науки Российской Федерации
Московский физико-технический институт (государственный университут)

Факультет управления и прикладной математики
Вычислительный центр им А. А. Дородницына РАН

Кафедра "Интеллектуальные системы"

03.04.01 Прикладные математика и физика

Порождающие и разделяющие модели для генерации
новых лекарств

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА

Автор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Попова Мария Сергеевна

Кафедра "Интеллектуальные системы"

Научный руководитель . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Стрижов Вадим Викторович

Доктор физико-математических наук
Научный сотрудник ВЦ РАН

Заведующий кафедрой . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Рудаков Константин Владимирович

Доктор физико-математических наук
Профессор, академик РАН

Москва
2017



Аннотация

Дизайн лекарств – очень сложный процесс, который требует много времени и средств.

От момента начала исследований до того момента, когда новый препарат будет доступен

для продажи, может пройти до 25 лет. Процесс дизайна нового лекарства может по-

терпеть неудачу в любой момент, но чаще всего это происходит на этапах клинических

испытаний, когда прошло десятилетие работы и были потрачены миллиарды долла-

ров. Зачастую неудачи случаются, потому что некоторые свойства молекул лекарства

оказались неподходящими. Например, молекула оказалась токсичной или биологиче-

ски неактивной в отношении желаемой мишени. Таким образом, существует проблема

выявления молекул-кандидатов с определенными свойствами на самой ранней вычис-

лительной стадии открытия лекарств. В основном существуют две стратегии дизайна

лекарств с помощью вычислительных методов. Первая – это виртуальный скрининг, и

её цель – поиск перспективных соединений среди миллионов существующих молекул.

Вторая стратегия – разработка лекарственного препарата de-novo. Её цель – создать мо-

лекулы лекарств с желаемыми свойствами с нуля. В этой работе мы предлагаем новую

вычислительную стратегию для de-novo дизайна лекарств, которая основана на глубо-

ком обучении и методах обучения с подкреплением. Эта стратегия позволяет получать

химические соединения с требуемыми свойствами. Общий рабочий процесс представ-

лен двумя глубокими нейронными сетями – генеративной и прогностической. Процесс

обучения состоит из двух этапов. На первом этапе обе модели обучаются отдельно с

помощью алгоритмов обучения с учителем, а на втором этапе модели проходят опти-

мизируются с помощью обучения с подкреплением. В этом исследовании мы проводим

вычислительный эксперимент, который демонстрирует эффективность предлагаемой

стратегии. Мы обучаем пять генеративных моделей для генерации химических соеди-

нений с оптимизированными физическими, химическими, структурными или биоактив-

ными свойствами. Мы также представляем несколько наборов данных новых соедине-

ний.
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Глава 1

Введение

The analysis of recent trends in drug development and approval presents rather bleak picture

[1]. The approval of new drugs has been flat over the last two decades. Less than one out

of every 10,000 drug candidates will be approved for sales on the market. Only three out of

every 20 approved drugs will be profitable enough to cover the costs of their development.

Moreover, the process of drug discovery is time and many consuming as an average cost

of developing each new drug is $1-3 billion and it takes approximately 10-15 years. A big

number of promising drug candidates fail in later stages of clinical development process –

phase II and phase III. At this stage failure is very expensive, as the projects have already

incurred high costs. This so-called innovation gap can be attributed to several challenges

ranging from drug safety concerns, lack of efficacy to great complexity of diseases and

tightened regulations. Thus, pharmaceutical industry is currently challenged to increase

the efficiency of drug development. Increasingly scientific advancements are more subject

to error and harder to reproduce. Human activities are identified as a principal bottleneck

in technological innovations. Which leads to inefficiencies, potential errors, and incomplete

explorations of the hypothesis and data analysis space. Artificial intelligence (AI) systems

can radically transform the practice of scientific discovery. The combination of artificial

intelligence and bis data is sometimes referred to as the fourth industrial revolution [2].

Today as machine learning also enables our computers to teach themselves drive cars or

automatically understand speech. AI is revolutionizing meny nedical specialties, for examples

radiology and pathology [3, 4]. Application of Deep Learning (DL) see significant improvement
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in docking scoring [5], learning from small data [6], reaction mechanism [7] and energy

prediction [8]. Drug discovery pipeline is notoriously sequential. Hits from a high throughput

screen (HTS) are slowly progressed toward promising lead compounds. Next ADMET and

selectivity profile is optimized with a challenge to maintain high potency and efficacy.

High failure rates in late-stage clinical trials could be potentially avoided if the essential

information were provided earlier or if the provided data could give some understanding

whether a drug-candidate will actually have all the expected properties in clinical practice.

The crucial step is to formulate of a well-motivated hypothesis for the problem compound

generation (de novo design) or compound picking from a library using the available SaR

data. Commonly, when a team of scientists from multiple disciplines generates the new

hypothesis, it usually relies on the medicinal chemistry intuition and expertise of the team

members. Therefore, any design hypothesis is easily biased towards preferred chemistry [9]

or model interpretation [10]. Idea of automated drug design is not new [11, 12]. It has

been used in drug discovery projects since 2000s by constructing novel molecules with

desired properties from scratch. This idea has already become an active research field. In an

attempt to design new compounds, both a medicinal chemist and algorithm is confronted

with a virtually infinite chemical space. Today range of potential drug-like molecules is

estimated to be between 1030 and 1060 [13, 14]. Unfortunately, high-throughput screening

(HTS) technology is not applicable to perform a search in such a large space [15]. Instead

of the systematic construction and evaluation of each individual compound, de novo design

process exploits principles of local optimization, which means, that the process does not

necessarily converges to the optimal solution, but leads to a local or ‘practical’ optimum

by stochastic sampling, or restricts the search to a smaller subspace of the whole chemical

space which can be screened exhaustively [11, 16, 17, 18]. However, recently a method for

exploring chemical space based on continuous encodings of molecules was proposed [19].

It allows directed gradient-based search through chemical space. Here we propose a novel

method based on deep reinforcement learning (RL) for generating chemical compounds

with desired physical, chemical or bio activity properties. Reinforcement learning (RL) is a

subset of artificial intelligence which is used to solve dynamic decision problems. RL involves

analyzing possible actions, estimating the statistical relationship between the actions and
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their possible outcomes and then determining a treatment regime that attempts to find

the most desirable outcome based on the analysis The integration of reinforcement learning

and neural networks dated back to 1990s [20]. However, with recent achievements of DL,

benefiting from big data, new powerful algorithmic approaches are emerging. We are currently

witnessing the renaissance of reinforcement learning [21], especially, the combination of

reinforcement learning and deep neural networks, i.e., deep reinforcement learning (Deep

RL). Most recently RL has led to superhuman performance in game Go [22], considered

practically intractable due to the theoretical complexity of over 10140 [23]. Therefore, we

see an example of attacking a problem of the difficulty comparable to a chemical space

exploration without brute-force computing every possible solution.

10



Глава 2

Методы

In this work we propose a novel RL based de novo design method for generating chemical

compounds with desired physical, chemical or bio activity properties. The general workflow

(see Figure 2-1) is represented by two deep neural networks (generative G and predictive

D). The process of training consists of two stages. During the first stage both models are

trained separately with supervised learning algorithms, and during the second stage models

are trained jointly with reinforcement learning approach optimizing target properties. In this

system generative models plays the role of agent. Predictive model plays the role of critic,

which estimates the agent’s behavior by assigning a numerical reward to every generated

molecule. The reward is function of the numerical property predicted by the predictive model.

The generative model is trained to maximize the expected reward.

The first model in our methodology is a generative recurrent neural network [24, 25,

26], which outputs molecules in the simplified molecular-input line-entry system (SMILES)

notation [27]. We propose using a special type of RNN, which is stack-augmented recurrent

Рис. 2-1: General pipeline of Reinforcement learning system for novel compounds generation
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(a) Scheme of stack augmented RNN time step
(b) Scheme of predictive
network

Рис. 2-2: Generative and predictive networks

neural network [28] (see Figure (2-2a)). Neural networks with stack memory are capable of

solving problems of sequence prediction which are unsolvable with regular neural networks.

This is possible because stack memory provides such neural networks the capacity to count

and memorize the sequences. One of the examples of sequences which can not be properly

modeled by regular recurrent network is words from Dyck language, which is a language of

balanced strings of brackets [29]. Another weakness of regular recurrent neural networks is

their inability to capture long term dependencies which leads to difficulties in generalizing

to longer sequences [30]. All of these properties are required to learn language of SMILES

notation. In a valid SMILES molecule, in addition to correct valence for all atoms, one must

count, ring opening and closure, as well as bracket sequence with several bracket types.

Therefore, Stack RNNs are proper choice for modeling such sequence dependencies.

The second model in our methodology is a predictive model for estimating physical,

chemical or bio activity properties of molecules. This property prediction model is a deep

neural network, which consists of embedding layer [31], LSTM layer [32] and two dense

layers. This network is designed to designed to calculate user-specified property (activity)

of the molecule taking tokenized SMILES string as an input data vector. The advantage of

such approach is that no numerical descriptors are needed as it learns directly from SMILES

notation.

At first stage, we pretrain a generative model on a dataset of approximately 1.5M drug-

like compounds, so that the model is capable of producing chemically feasible molecules, but
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without property optimization. At second stage we combine both generative and predictive

model into one reinforcement learning system. In this system generative plays the role of

agent, whose action space is represented by the SMILES notation alphabet and state space

is represented by all possible strings in this alphabet. Predictive model plays the role of critic,

which estimates the agent’s behaviour by assigning a numerical reward to every generated

molecule. The reward is function of numerical property predicted by predictive model. At this

stage the generative model is trained to maximize the expected reward. The whole pipelene

is illustrated on Figure (2-1).

2.1 Постановка задачи

This section provide a formal problem statement for the task of generating SMILES strings

for chemical compounds with desired properties.

Given a set of objects S = {s1, . . . , sn}, where each object si is a string of characters from

alphabet A = {a1, a2, . . . ,m}. Without loss of generality, the length of each sequence from

set S is assumed to be fixed and equal to L. Let’s assume that there exists a probability

distribution p over the set AL, which is a set of all possible sequences of length L from

alphabet A, and that the set S is sampled from the distribution p. The problem then can be

formulated as follows: construct a model for sampling new objects from distribution p.

Let’s assume that the stated problem can be solved by a parametric generator model

G(θ;w), which will be described further in details, where θ ∈ Rm is a vector of parameters

and w ∈ Θ is a vector of hyper-parameters. The vector w of hyper-parameters is assumed to

be fixed. Further we will call G as generative model and omit vector w of hyper-parameters

in its notation. Generative model G(θ) is probabilistic and can be applied to the task of

generating new objects:

Ŝ = f(w;θ),

where Ŝ = {ŝ1, . . . , ŝm} is a set of generated by the generator model objects such that

ŝj /∈ S ∀j = 1, . . . ,m. The optimal vector of parameters θ̂ of the generator model f can be
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found by optimizing two functions:
L(S, G)→ min

θ
,

Q(Ŝ)→ max
θ

→ θ̂,

where

L(S, G) =
n∑
i=1

l(si, G)

is a sum of loss functions on training set and

Q(Ŝ) =
m∑
i=1

q(ŝi)

is a sum of quality functions on generated set. Both functions will be particularly defined

further.

2.2 Порождающая модель как генеративная рекуррент-

ная нейронная сеть со стековой памятью

This section describes generative model G in more details. We assume, that the data is

sequential, which means that it comes in the form of discrete tokens, for example, characters.

The goal is to build a model, which is able to predict the next token taking all the previous

ones. The regular recurrent neural network has an input layer and a hidden layer. At time

step t neural network takes the embedding vector of token number t from the sequence as

an input and models the probability distribution of the next token given all previous tokens,

so that the next token can be sampled from this distribution. Information of all previously

observed tokens is aggregated in the hidden layer. This can be written down as the following:

ht = σ(Wixt +Whht−1),

where ht is a vector of hidden states, ht−1 – vector of hidden states from the previous time

step, xt – input vector at time step t, Wi – parameters of the input layers, Wh – parameter

14



of the hidden layer ans σ – activation function.

The stack memory is used to keep the information and deliver it to the hidden layer

at the next time step. A stack is a type of persistent memory which can be only accessed

through its topmost element. There are three basic operations supported by the stack: POP

operation, which deletes an element from the top of the stack, PUSH operation, which puts

a new element to the top of our stack, and also NO-OP operation, which performs no action.

The top element of the stack has value st[0] and is stored at position 0:

st[0] = at[PUSH]σ(Dht) + at[POP]st−1[1] + at[NO-OP]st−1[0].

where D is 1×m matrix and at = [at[PUSH], at[POP], at[NO-OP]] is a vector of stack control

variables, which define the next operation to be performed. If at[POP] is equal to 1, then the

value below is used to replace the top element of the stack. If at[PUSH] is equal to 1, then a

new value will be added to the top and all the rest values will be moved down. If at[NO-OP]

equals 1 then stack keeps the same value on top. Similar rule is applied to the elements of

the stack at a depth i > 0:

st[i] = at[PUSH]st−1[i− 1] + at[POP]st−1[i+ 1] + at[NO-OP]st−1[i].

Now the hidden layer ht is updated as:

ht = σ(Uxt +Rht−1 + Pskt−1),

where P is a matrix of size m × k and skt−1 are the first k elements for the top of the stack

at time step t− 1.

2.3 Разделяющая модель для оценки свойств

This section describes predictive model D that is used to estimate quality Q of generated

molecules. In this model we also consider sequences of discrete tokens, for examples, characters.

The goal of predictive model is to estimate a given property taking this sequential data as an
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input. As it was mentioned above, predictive model D is a deep neural network, that consists

of input layer, embedding layer [31], long-short term memory layer [32] and 2 feed-forward

layers. The architecture of predictive model is illustrated on Figure 2-2b.

Input layer takes a sequence of discrete tokens, embedding layer processes this sequence

into a continuous vector of representations. Further goes LSTM layer with tanh non-linearity

function, that transform vector from embedding layer into a feature vector. The first feed

forward layer performs nonlinear tanh transformation of the feature vector and the next

feed-forward layer with a relu activation function and one unit predicts a desired property.

2.4 Поставнока задачи молекулярного дизайна как за-

дачи обучения с подкреплением

This section describes how the stated problem of new SMILES generation can be formulated

in terms of Reinforcement Learning approach. The idea is to combine both generative G and

predictive model D into one reinforcement learning system. The set of actions A is defined as

an alphabet of SMILES notation. The set of states S is defined as all possible strings in the

alphabet with lengths from 0 to some T . The state s0 with length 0 is unique and considered

to be an initial state. The state sT of length T is called terminal state and it causes episode

to end. The subset of terminal states S∗ = {sT ∈ S} of S which contains all the states sT

with length T is called the terminal states set. Reward r(sT ) is calculated in the end of an

episode, when terminal state is reached. Intermediate rewards r(st), t < T are equal to 0. In

these terms the generator network G can be treated as a policy approximation model. At

each time step t, 0 < t < T, G takes previous state st−1 as an input and estimates probability

distribution p(at|st−1) of the next action. Afterwards, the next action at is sampled from this

estimated probability. Reward r(sT ) is a function of the predicted property of sT by the

predictive model D:

r(sT ) = f(D(sT )),

where f is chosen expertly depending on the task. Some examples of the functions f are

provided further in the computational experiment section. Given these notations and assumptions,
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the problem of generating chemical compounds with desired properties can be formulated as

a task of finding a vector of parameters θ of policy network G which maximizes the expected

reward:

J(θ) = E[r(sT )|s0, θ] =
∑
sT∈S∗

G(sT )r(sT )→ max.

This sum iterates over the set S∗ of terminal states. In our case this set is exponential and

the sum can not be exactly computed. The trick is to approximate this sum as a mathematical

expectation by sampling terminal sequences from the model distribution:

J(θ) = E[r(sT )|s0, θ] = Ea1∼pθ(a1|s0)Ea2∼pθ(a2|s1) . . .EaT∼pθ(aT |sT−1)r(sT ).

So, the procedure for J(θ) estimation is following: sequentially sample at from the model

G for t from 0 to T . The unbiased estimation for J(θ) is the sum of all rewards in every

time step which in our case equals to the reward for the terminal state as we assume that

intermediate rewards are equal to 0. As this quantity needed to me maximizes, we need

to compute its gradient. This can be done with a REINFORCE algorithm [33] which uses

approximation of mathematical expectation as a sum, which we provided above, and the

following trick:

∂θf(θ) = f(θ)
∂θf(θ)

∂θ
= f(θ)∂θ[log f(θ)].

So, the gradient of J(θ) can be written down as:

∂θJ(θ) =
∑
sT∈S∗

[∂θpθ(sT )]r(sT ) =

=
∑
sT∈S∗

pθ(sT )[∂θ log pθ(sT )]r(sT ) =
∑
sT∈S∗

pθ(sT )

[∑
t=1T

∂θ log pθ(at|st−1)

]
r(sT ) =

= Ea1∼pθ(a1|s0)Ea2∼pθ(a2|s1) . . .EaT∼pθ(aT |sT−1)

[∑
t=1T

∂θ log pθ(at|st−1)

]
r(sT ),

which gives as an algorithm for ∂θJ(θ) estimation.
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Глава 3

Вычислительный эксперимент

3.1 Описание данных

3.1.1 Данные для порождающей модели

For training generative model G we took ChEMBL database of drug-like compounds [34],

which consists of approximately 1.5 million of SMILES strings.

We preprocessed the data by selecting from initial training dataset just those molecules,

which SMILES notation length is less than 100 characters. The length of 100 is chosen

because more than 97% of SMILES in training dataset are 100 characters or less (see Figure

3-1).

Рис. 3-1: Initial (left) and truncated (right) distribution of SMILES’s lengths
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3.1.2 Данные для разделяющей модели

We have dataset for three properties – melting temperature, partition coefficient log P

and pIC50 of JAK2 kinase. These datasets include 47000, 15000 and 15000 compounds

respectively. Every compound is labeled with a corresponding property.

3.2 Процедура обучения

We trained a stack-augmented RNN which was described in section 2.1. as a generative

model. This network has 1500 units in recurrent GRU layer [35] and 512 units in stack

augmentation layer. As a training dataset we took ChEMBL database of drug-like compounds

[34], which includes approximately 1.5 million of SMILES strings. The model was trained on

GPU for 10000 epochs. The learning curve is illustrated in Figure 3-2.

Рис. 3-2: Learning curve of generative model

As an object for training our generative model receives a sequence of 100 characters,

which can include several SMILES strings, separated by spaces. The last SMILES in a

training sequences is truncated, so that the length of the whole sequence doesn’t exceed 100
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characters.

3.3 Порождающая модель

The generative model has two modes of processing sequences – training and generating. In

training mode at each time step the generative network takes a current prefix of training

object and predicts the probability distribution of next character. Then, the next character

is sampled from this predicted probability distribution and is compared to the ground

truth. Afterwards, based on this comparison the cross-entropy loss function is calculated and

parameters of the model are updated. In generating mode at each time step the generative

network takes a prefix of already generated sequence and then, similar to training mode,

predicts probability distribution of next character and samples it from this predicted distribution.

In generating mode we do not update model parameters.

3.3.1 Генерация неоптимизированных молекул

To demonstrate the versatility of the baseline (unbiased) Stack RNN we generated a dataset

of over one million virtually synthesized compounds. Random examples of the generated

compounds are illustrated in Figure 3-3. Over 91% of generated structures, were valid

chemically-sensible molecules. The validity check was performed by the structure checker

from ChemAxon [36]. When compared with ChEMBL [34], model produced just about 1%

of structures from the training dataset. Additional comparison with ZINC15 database [37]

of 320M synthetically accessible drug-like molecules show match of about 4% structures.

Overall, this analysis suggests that generative Stack RNN model did not simply memorized

training SMILEs sequences but is capable to generate extremely diverse but realistic molecules.

3.4 Разделяющая модель

We trained three predictive models for three different properties – melting temperature, log

P and pIC50 for JAK2 kinase. Each model consists of embedding layer, which transforms

sequence of discrete tokens into a vector of 100 continuous numbers, LSTM layer with 100
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Рис. 3-3: Examples of molecules produced by generative model

units and tanh nonlinearity, one dense layers with 100 units and rectify nonlinearity function

and one dense layer with one unit and identity activation function. All three models were

trained with learning rate decay technique until convergence. As it was mentioned above,

the training datasets for melting temperature, log P and pIC50 for JAK2 kinase consist of

47000, 15000 and 15000 compounds respectively. These datasets were divided into training

and validation sets in a ratio of 3 : 1. The results and accuracy of the model are shown in

Figure 3-4.
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Рис. 3-4: Distribution of residuals for predictive models

3.5 Система обучения с подкреплением

To explore the utility of the RL algorithm in a drug design setting we have set up a multiple

case studies that optimize three types of rewards: a) physical property, b) biological activity

and c) chemical substructure. For physical properties we selected melting temperature (Tm)

and octanol-water partition coefficient (logP). Inhibition potency in form of IC50 to JAK2

kinase was used as biological activity. Finally, number of benzene rings and number of

substituents (like –OH, -NH2, -CH3 –CN, etc.) was used as a structural reward. Figures 3-6,

3-9, 3-13, 3-16a, and 3-16b show distribution of predicted properties of interest before and

after experiments. In both cases, we sampled 10000 molecules by the default and optimized

generative models and calculated their properties with a corresponding predictive model.

Values of the substructure features were calculated directly from the 2D structure. Table 4.1

summarizes analysis of generated molecules and descriptive statistics.

3.5.1 Оптимизация температуры плавления

In this experiment we set two goals to minimize and maximize the target property. Upon

minimization the mean of the distribution was shifted by 44oC. Optimized generator virtually

synthesized simple hydrocarbons like butane, and poly-halogenated compounds CF2Cl2 and

C6H4F2. CF4 molecule has a lowest Tm = −184oC in the produced dataset. This property

minimization strategy is extremely effective, it allowed to discover molecules in the regions

of chemical space far beyond available in the training examples. In the maximization regime

mean of the melting temperature is increased by 20oC to 200oC. Generator synthesized

substantially more complex molecules with abundance of Sulphur heterocycles, phosphates

as well as conjugated double bonds. The reward functions in both cases are defined as
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piecewise linear function from melting temperature (see Figure 3-5). Figure 3-6 demonstrates

the results of optimization and Figures 3-7 and 3-8 provide examples of generated molecules

both for minimization and maximization regimes.

(a) Reward function for melting temperature
minimization

(b) Reward function for melting temperature
maximization

Рис. 3-5: Reward function for melting temperature optimization

Рис. 3-6: Distribution of minimized, untrained and maximized melting temperature

Рис. 3-7: Examples of molecules with minimized melting temperature

23



Рис. 3-8: Examples of molecules with maximized melting temperature

3.6 Оптимизация липофильности

In the second experiment we set the goal to optimize the log P property values of generated

molecules. To better mimic requirements of drug-likeliness instead of property minimization

we imposed to the range. The reward function in this case was defined as a piecewise linear

function of log P with a constant region from 1.0 to 4.0 (see Figure 3-10). In other words, we

set the goal to uniformly synthesize molecules according to a typical Lipinski’s constraints.

After training 88% of generated molecules were within logP from 0 to 5. The results of

optimization are demonstrated in Figure 3-9. Figure 3-11 show some examples of generated

molecules.

Рис. 3-9: Distribution of untrained and optimized log P
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Рис. 3-10: Reward function for log P optimization

Рис. 3-11: Examples of molecules with optimized partition coefficient

3.7 Оптимизация биологической активности

In the third experiment, perhaps most relevant to the practical drug discovery application

we directly minimized and maximized pIC50 values for JAK2 kinase. The reward function

both in cases was defined as exponential functions of pIC50 (see Figure 3-12). The results

of optimization are demonstrated in Figure 3-13. With minimization, the mean of predicted

pIC50 distribution was shifted by about one unit. However, distribution is heavily tailed,

and 24% of molecules are predicted to have practically no activity (pIC50 ≤ 4). In the

maximization strategy, properties of generated molecules were more tightly distributed bet.

In both cases models virtually synthesized known and novel compounds based on one scaffold

as well as suggested new scaffolds. Overall, system retrospectively discovered multiple commercially

available compounds deposited in ZINC database. Figures 3-14 and 3-15 show some examples

of generated molecules both for JAK2 activity minimization and maximization.
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(a) Reward function for pIC50 of JAK2 kinase
minimization

(b) Reward function for pIC50 of JAK2 kinase
maximization

Рис. 3-12: Reward function for pIC50 of JAK2 kinase optimization

Рис. 3-13: Distribution of minimized, untrained and maximized pIC50 of JAK2 kinase

Рис. 3-14: Examples of molecules with minimized pIC50 for jak2 kinase

3.8 Оптимизация структурных свойств

Finally, we also performed two simple experiments mimicking biasing chemical libraries to a

user-defined substructure without predicting any property. We defined the reward function

as the exponent of a) number of monosubstitured benzene rings (-Ph) (see Figure 3-17a)

26



Рис. 3-15: Examples of molecules with maximized pIC50 for jak2 kinase

and b) total number of small groups substituents (see Figure 3-17b). Among all case studies

described, structure bias was easiest to optimize. Figures 3-16a and 3-16b illustrate results

of optimization and Figures 3-18 and 3-19 show some examples of generated molecules.

(a) Distribution of untrained and maximized
number of benzene rings

(b) Distribution of untrained and maximized
number of substituents

Рис. 3-16: Distributions of structure bias optimization

(a) Reward function for benzene rings number
maximization

(b) Reward function for substituents number
maximization

Рис. 3-17: Reward function for structure bias optimization
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Рис. 3-18: Examples of molecules with maximized number of 6 carbon ring

Рис. 3-19: Examples of molecules with maximized number of hydrogen substituents
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Глава 4

Обсуждение и выводы

4.1 Результаты и анализ модели

Table 4.1 summarizes results of all the experiments conducted in the thesis. This table shows

decrease in a proportion of valid molecules after optimization. We explain this phenomenon

by the weaknesses of predictive model D. I.e. generative model G tends to find some local

optima of reward function, that correspond to invalid molecules, but predictive model D

assigns these molecules high rewards. Our explanation is supported by the results of structure

bias optimization experiments, as in these experiments we didn’t use any predictive models

and decrease in proportion of valid molecules wasn’t so significant. We also notice, that among

the experiments which include predictive models, experiment with log P optimization and

bioactivity of JAK2 kinase show higher proportion of valid molecules and, at the same time,

corresponding predictive models have higher quality R2 = 0.91.

4.2 Интерпретация параметров рекуррентной нейрон-

ной сети

In this section we demonstrate how recurrent neural network can memorize and process

some properties of the SMILES string that it is currently processing. We looked inside

the neurons gate activations of the neural network while it processes the input data (see
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Таблица 4.1: Comparison of statistics for optimized, untrained and training molecules
datasets

Property
Proportion
of valid
molecules

Mean
molar
mass

Mean
property
value
through
dataset

Proportion
of matches
with ZINC
database

Proportion
of matches
with
ChEMBL
database

Melting
temperature

untrained 91% 435.4 181.30 4.7% 1.5%

minimized 31% 279.6 137.17 4.6% 1.6%

maximized 53% 413.2 200.715 2.4% 0.9%

pIC50 of
jak2
kinase

untrained 91% 435.4 5.70 4.7% 1.5%

minimized 60% 481.8 4.89 2.5% 1.0%

maximized 45% 275.4 7.85 4.5% 1.8%

log P

untrained 91% 435.4 3.63 4.7% 1.5%

optimized 70% 369.7 2.58 5.8% 1.8%

Number of
benzene rings

untrained 91% 435.4 0.59 4.7% 1.5%

optimized 83% 496.0 2.41 5.5% 1.6%

Number of
substituents

untrained 91% 435.4 3.8 4.7% 1.5%

optimized 80% 471.7 7.93 3.1% 0.7%

Figure 4-1). In this figure each line corresponds to activations of one neuron at different

time steps of processing SMILES string. Each letter is coloured according to the value of

activation in cool-warm colormap from dark blue to dark red – from −1 to 1. We discovered

that that our RNN has several interpretable cells, that can be divided into two groups –

chemically sensible, that captures chemical groups, such as aromatic moiety, carbonyl group

or heterocyclic nitrogen, and syntactic, that, for example, captures brackets or decides when

the molecule ends. We also discovered, that some neurons have opposite ones, which get

deactivated when processing the same group.
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Рис. 4-1: Examples of RNN neurons activation values

4.3 Визуализация результатов

In this section we visualize generated molecules in chemical space using t-Distributed Stochastic

Neighbor Embedding (t-SNE) technique for dimensionality reduction [38]. We generated

datasets for melting temperature, bio activity of JAK2 kinase and log P with corresponding

optimized generative modelsG, then for every molecule we calculated a vector of representation

as an output from the feed-forward layer with relu activation function in the predictive model

D for the corresponding property and calculated its 2D projection using t-SNE. Obtained

projections are illustrated in Figures 4-2, 4-3, 4-4. In this figure every point corresponds to

a molecule and is colored according to its property value in a cool-warm colormap, where

dark blue color corresponds to low values and dark red – to high values. For bioactivity

of JAK2 kinase and log P t-SNE diagrams have well defined clusters, while for melting

temperature there are no such clusters. This observation can be explained by the fact, that

melting temperature depends not only on a structure of one separate molecule, but also on

intermolecular forces and how the molecules are packed in a substance.
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Рис. 4-2: t-SNE diagram for bioactivity of JAK2 kinase

Рис. 4-3: t-SNE diagram for partition coefficient
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Рис. 4-4: t-SNE diagram for melting temperature
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Глава 5

Заключение

In this thesis we proposed end-to-end deep learning system for de novo molecular design.

The system is data-driven and does not rely on hand-crafted features. Deep learning is

poised to transform drug discovery and computational chemistry. As a pilot application,

we systematically demonstrate how Deep Reinforcement Learning model can be used for de

novo computational drug design. In experimental part we showed how Deep RL system can

generate chemically sensible molecules with optimized properties. We took into consideration

five different properties, which include physical, chemical, bio-activity and structural one.

To out best knowledge, this is a first case of optimizing bio-activity property, described

in scientific literature. Further development of the system includes overcoming existing

limitations such as predictive model weaknesses exploitation and also extending the system

for optimizing several properties simultaneously.
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