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Anborarus
JluzaitH JIeKapcTB — OY€Hb CJIOXKHBIN IIPOIECC, KOTOPBI TpedyeT MHOIO BPpeMEH! U CPEICTB.
Ot MoMeHTa HavaJ1a NCCIeJ0BaHUI 10 TOTO MOMEHTa, KOT/Ia HOBBII Ipenapat Oy/1eT JOCTyIIeH
JUIS TIPpOJaXKu, MoxkeT mpoiitu jo 25 jet. [Iporecc auzaitHa HOBOTO JieKapCTBa MOXKET IO-
TepleTh Heyaady B JIFOOOH MOMEHT, HO Jallle BCEro 9TO IMPOUCXOIUT Ha dTalaX KIANHIIECKHX
UCIIBITAHUN, KOTJ/Ia MPOILIO JiecaTuaeTre padboThl M ObLIN IMOTPaveHbl MUJIIUAP/IBI JI0JLIa-
POB. 3a4acTyIo HEyIadn CJIYYIar0TCd, IIOTOMY 9TO HEKOTOPBIE CBOMCTBa MOJIEKYJI JIEKAPCTBA
OKazaJIMCh Henoaxoadamumu. Hampumep, MoJiekysia oka3aiach TOKCHYHON WM OHOJIOrHUe-
CKI HEaKTHUBHOI B OTHOIIEHUM KejjaeMoil MutiieHu. Takum obpas3oM, cyliecTByeT IpobjemMa
BbIABJICHUA MOJIEKYJ/I-KaHIUJAATOB C OIIPpeAde/ICHHbIMN CBOHCTBaMHU Ha CaMOi paHHefI BbIYUC-
JINTEJILHOW CTauU OTKPBLITHsI JIEKAPCTB. B OCHOBHOM CYIIIECTBYIOT JIBE CTPATErwy JU3aiiHa
JIEKAPCTB C ITOMOIIBIO BBITUCIUTEIHLHBIX METOIO0B. IlepBas — 9T0 BUPTyaJbHBI CKPUHUHT, 1
eé OeJib — IIOUCK IIEPCIICKTHUBHBIX COG,Z[I/IHGHI/Iﬁ cpean MHUJIJIMOHOB CYHICCTBYIOIIUX MOJICKYJI.
Bropas crparerust — paspaboTka JieKapcTBeHHOro mpenapata de-novo. E€ e — co3mars Mo-
JIEKYJIBI JIEKAPCTB € YKeJTaeMbIMI CBOMCTBaMU ¢ HyJ/Isd. B 9Toit pabore MbI IIpejijiaraeM HOBYIO
BBIYUCIUTEIHLHYIO CTPpaTeruio s de-novo amsaiiHa JeKapcTB, KOTOpasi OCHOBaHa Ha I1ybo-
KOM O6yquI/H/I 1 MEeTOoJaXx O6y‘{eHI/IH C IIOJKPEIlJICHUEM. 9Ta CTpaTerud IO3BOJISAAET II0JIydaTb
XUMUYECKHe COeINHeHnsI ¢ TpebyeMbiMu cBoiicTBaMu. OOmmmiit pabodnii mpoIece MmpecTaB-
JIEH IByMsl TUIyOOKUMU HEMPOHHBIMU CETSIMU — T'eHepaTUBHON 1 Iporuoctudeckoii. Ilporecc
obydeHnsi coCTOUT M3 JBYX dTamnoB. Ha mepBom sTare obe mojen o0ydarTcs OTJIEJIbHO C
ITOMOIIBIO AJITOPUTMOB OOyYeHHs C yIUTeJeM, a Ha BTOPOM STalle MOJETH MPOXOIAT OITHU-
MUBHUPYIOTCS € TIOMOIIBIO O0YYeHHs ¢ MOJKpeIIeHHeM. B 9TOM UccIeJOBAHIU MbI IIPOBOIIM
BBIYUCIUTEbHBIA KCIIEPUMEHT, KOTOPBI JieMOHCTPUPYET 3(M@MEKTUBHOCTDL TIpeJIaracMoit
CTpaTeruu. MBI o6yqaeM IIATh T'eHePpaTUBHBIX MOJ:LGJIGIZ JJId TeHepallii XUMHUYIeCKUX COeIU-
HEHUIl ¢ ONTUMU3UPOBAHHBIMU (PU3NIECKUMU, XUMUIECKIMU, CTPYKTYPHBIMI U OMOAKTHB-
HBIME cBoficTBaMu. MbI TaK»Ke IpeICTaB/IsIeM HECKOJIBKO HAOOPOB JAHHBIX HOBBIX COEIUHE-

HUIA.
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I'1aBa 1

BBenenune

The analysis of recent trends in drug development and approval presents rather bleak picture
[1]. The approval of new drugs has been flat over the last two decades. Less than one out
of every 10,000 drug candidates will be approved for sales on the market. Only three out of
every 20 approved drugs will be profitable enough to cover the costs of their development.
Moreover, the process of drug discovery is time and many consuming as an average cost
of developing each new drug is $1-3 billion and it takes approximately 10-15 years. A big
number of promising drug candidates fail in later stages of clinical development process —
phase II and phase III. At this stage failure is very expensive, as the projects have already
incurred high costs. This so-called innovation gap can be attributed to several challenges
ranging from drug safety concerns, lack of efficacy to great complexity of diseases and
tightened regulations. Thus, pharmaceutical industry is currently challenged to increase
the efficiency of drug development. Increasingly scientific advancements are more subject
to error and harder to reproduce. Human activities are identified as a principal bottleneck
in technological innovations. Which leads to inefficiencies, potential errors, and incomplete
explorations of the hypothesis and data analysis space. Artificial intelligence (AI) systems
can radically transform the practice of scientific discovery. The combination of artificial
intelligence and bis data is sometimes referred to as the fourth industrial revolution [2].
Today as machine learning also enables our computers to teach themselves drive cars or
automatically understand speech. Al is revolutionizing meny nedical specialties, for examples

radiology and pathology [3, 4|. Application of Deep Learning (DL) see significant improvement
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in docking scoring [5], learning from small data [6], reaction mechanism |7] and energy
prediction [8]. Drug discovery pipeline is notoriously sequential. Hits from a high throughput
screen (HTS) are slowly progressed toward promising lead compounds. Next ADMET and
selectivity profile is optimized with a challenge to maintain high potency and efficacy.
High failure rates in late-stage clinical trials could be potentially avoided if the essential
information were provided earlier or if the provided data could give some understanding
whether a drug-candidate will actually have all the expected properties in clinical practice.
The crucial step is to formulate of a well-motivated hypothesis for the problem compound
generation (de novo design) or compound picking from a library using the available SaR
data. Commonly, when a team of scientists from multiple disciplines generates the new
hypothesis, it usually relies on the medicinal chemistry intuition and expertise of the team
members. Therefore, any design hypothesis is easily biased towards preferred chemistry [9]
or model interpretation [10]. Idea of automated drug design is not new [11, 12]. It has
been used in drug discovery projects since 2000s by constructing novel molecules with
desired properties from scratch. This idea has already become an active research field. In an
attempt to design new compounds, both a medicinal chemist and algorithm is confronted
with a virtually infinite chemical space. Today range of potential drug-like molecules is
estimated to be between 103 and 10%° [13, 14|. Unfortunately, high-throughput screening
(HTS) technology is not applicable to perform a search in such a large space [15]. Instead
of the systematic construction and evaluation of each individual compound, de novo design
process exploits principles of local optimization, which means, that the process does not
necessarily converges to the optimal solution, but leads to a local or ‘practical’ optimum
by stochastic sampling, or restricts the search to a smaller subspace of the whole chemical
space which can be screened exhaustively [11, 16, 17, 18]. However, recently a method for
exploring chemical space based on continuous encodings of molecules was proposed [19].
It allows directed gradient-based search through chemical space. Here we propose a novel
method based on deep reinforcement learning (RL) for generating chemical compounds
with desired physical, chemical or bio activity properties. Reinforcement learning (RL) is a
subset of artificial intelligence which is used to solve dynamic decision problems. RL involves

analyzing possible actions, estimating the statistical relationship between the actions and



their possible outcomes and then determining a treatment regime that attempts to find
the most desirable outcome based on the analysis The integration of reinforcement learning
and neural networks dated back to 1990s [20]. However, with recent achievements of DL,
benefiting from big data, new powerful algorithmic approaches are emerging. We are currently
witnessing the renaissance of reinforcement learning [21], especially, the combination of
reinforcement learning and deep neural networks, i.e., deep reinforcement learning (Deep
RL). Most recently RL has led to superhuman performance in game Go [22|, considered
practically intractable due to the theoretical complexity of over 10'*° [23]. Therefore, we
see an example of attacking a problem of the difficulty comparable to a chemical space

exploration without brute-force computing every possible solution.
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I's1aBa 2

MeTtoabl

In this work we propose a novel RL based de novo design method for generating chemical
compounds with desired physical, chemical or bio activity properties. The general workflow
(see Figure 2-1) is represented by two deep neural networks (generative G and predictive
D). The process of training consists of two stages. During the first stage both models are
trained separately with supervised learning algorithms, and during the second stage models
are trained jointly with reinforcement learning approach optimizing target properties. In this
system generative models plays the role of agent. Predictive model plays the role of critic,
which estimates the agent’s behavior by assigning a numerical reward to every generated
molecule. The reward is function of the numerical property predicted by the predictive model.
The generative model is trained to maximize the expected reward.

The first model in our methodology is a generative recurrent neural network [24, 25,
26|, which outputs molecules in the simplified molecular-input line-entry system (SMILES)

notation [27]. We propose using a special type of RNN, which is stack-augmented recurrent

Generative model Predictive model

Starting Predicted Reward
token property function

Puc. 2-1: General pipeline of Reinforcement learning system for novel compounds generation

11



Predicted
property
<t oo - * -
Next 4
token

Previous Stack Next
stack state ) augmentation stack state | RENISE LOEN |
/ *
L — //
| LSTM LAYER I
Stack RNN from Next token -
updates stack ) probability
: , | |
: | |
/

EMBEDDING LAYER

INPUT LAYER

Next
RNN state

(b) Scheme of predictive

(a) Scheme of stack augmented RNN time step network

RNN from
hidden

Previous
RNN state

=

RNN time step

Puc. 2-2: Generative and predictive networks

neural network [28] (see Figure (2-2a)). Neural networks with stack memory are capable of
solving problems of sequence prediction which are unsolvable with regular neural networks.
This is possible because stack memory provides such neural networks the capacity to count
and memorize the sequences. One of the examples of sequences which can not be properly
modeled by regular recurrent network is words from Dyck language, which is a language of
balanced strings of brackets [29]. Another weakness of regular recurrent neural networks is
their inability to capture long term dependencies which leads to difficulties in generalizing
to longer sequences [30]. All of these properties are required to learn language of SMILES
notation. In a valid SMILES molecule, in addition to correct valence for all atoms, one must
count, ring opening and closure, as well as bracket sequence with several bracket types.
Therefore, Stack RNNs are proper choice for modeling such sequence dependencies.

The second model in our methodology is a predictive model for estimating physical,
chemical or bio activity properties of molecules. This property prediction model is a deep
neural network, which consists of embedding layer [31], LSTM layer [32] and two dense
layers. This network is designed to designed to calculate user-specified property (activity)
of the molecule taking tokenized SMILES string as an input data vector. The advantage of
such approach is that no numerical descriptors are needed as it learns directly from SMILES
notation.

At first stage, we pretrain a generative model on a dataset of approximately 1.5M drug-

like compounds, so that the model is capable of producing chemically feasible molecules, but
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without property optimization. At second stage we combine both generative and predictive
model into one reinforcement learning system. In this system generative plays the role of
agent, whose action space is represented by the SMILES notation alphabet and state space
is represented by all possible strings in this alphabet. Predictive model plays the role of critic,
which estimates the agent’s behaviour by assigning a numerical reward to every generated
molecule. The reward is function of numerical property predicted by predictive model. At this
stage the generative model is trained to maximize the expected reward. The whole pipelene

is illustrated on Figure (2-1).

2.1 IlocraHoBKa 3aga4u

This section provide a formal problem statement for the task of generating SMILES strings

for chemical compounds with desired properties.

Given a set of objects S = {sy,...,s,}, where each object s; is a string of characters from
alphabet A = {ay,as,...,m}. Without loss of generality, the length of each sequence from
set S is assumed to be fixed and equal to L. Let’s assume that there exists a probability
distribution p over the set AL, which is a set of all possible sequences of length L from
alphabet A, and that the set S is sampled from the distribution p. The problem then can be

formulated as follows: construct a model for sampling new objects from distribution p.

Let’s assume that the stated problem can be solved by a parametric generator model
G(0; w), which will be described further in details, where 8 € R™ is a vector of parameters
and w € O is a vector of hyper-parameters. The vector w of hyper-parameters is assumed to
be fixed. Further we will call G as generative model and omit vector w of hyper-parameters
in its notation. Generative model G(0) is probabilistic and can be applied to the task of

generating new objects:

~

S =f(w;0),
where § = {81,...,8n} is a set of generated by the generator model objects such that
§; ¢ SVj =1,...,m. The optimal vector of parameters 6 of the generator model f can be
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found by optimizing two functions:

where

L(S,G) = il(si, G)

is a sum of loss functions on training set and

QES) =Y _a(5)
i=1
is a sum of quality functions on generated set. Both functions will be particularly defined

further.

2.2 Tlopoxkaroiiasi MoAeJb KaK reHepaTuBHas PEeKYPPEHT-

Hasd HeﬁpOHHaH ceTh CO CTEKOBOII IMaMsTbIO

This section describes generative model G in more details. We assume, that the data is
sequential, which means that it comes in the form of discrete tokens, for example, characters.
The goal is to build a model, which is able to predict the next token taking all the previous
ones. The regular recurrent neural network has an input layer and a hidden layer. At time
step t neural network takes the embedding vector of token number ¢ from the sequence as
an input and models the probability distribution of the next token given all previous tokens,
so that the next token can be sampled from this distribution. Information of all previously

observed tokens is aggregated in the hidden layer. This can be written down as the following:
hy = o(Wizy + Wihi 1),

where h; is a vector of hidden states, h;_; — vector of hidden states from the previous time

step, x; — input vector at time step t, W; — parameters of the input layers, W), — parameter
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of the hidden layer ans ¢ — activation function.

The stack memory is used to keep the information and deliver it to the hidden layer
at the next time step. A stack is a type of persistent memory which can be only accessed
through its topmost element. There are three basic operations supported by the stack: POP
operation, which deletes an element from the top of the stack, PUSH operation, which puts
a new element to the top of our stack, and also NO-OP operation, which performs no action.

The top element of the stack has value s,][0] and is stored at position 0:
St [O] = Q¢ [PUSH]O’(Dht) + ay [POP]Stfl[l] + ay [NO—OP]Stfl[O}.

where D is 1 x m matrix and a; = [a;[PUSH], a,[POP], a;[NO-OP]] is a vector of stack control
variables, which define the next operation to be performed. If a;[POP] is equal to 1, then the
value below is used to replace the top element of the stack. If a;,[PUSH] is equal to 1, then a
new value will be added to the top and all the rest values will be moved down. If a;[NO-OP]
equals 1 then stack keeps the same value on top. Similar rule is applied to the elements of

the stack at a depth ¢ > 0:
s¢lt] = a;[PUSH]s;_1[i — 1] + a¢[POP]s;_1[i + 1] + a;[NO-OP]s;_1[i].
Now the hidden layer h; is updated as:
hi = o(Uzy + Rhy_1 + PsF ),

where P is a matrix of size m x k and s | are the first k elements for the top of the stack

at time step ¢ — 1.

2.3 Pazgensromasg MoJieb JJisl OIIeHKI CBOIICTB

This section describes predictive model D that is used to estimate quality () of generated
molecules. In this model we also consider sequences of discrete tokens, for examples, characters.

The goal of predictive model is to estimate a given property taking this sequential data as an
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input. As it was mentioned above, predictive model D is a deep neural network, that consists
of input layer, embedding layer [31], long-short term memory layer [32] and 2 feed-forward
layers. The architecture of predictive model is illustrated on Figure 2-2b.

Input layer takes a sequence of discrete tokens, embedding layer processes this sequence
into a continuous vector of representations. Further goes LSTM layer with tanh non-linearity
function, that transform vector from embedding layer into a feature vector. The first feed
forward layer performs nonlinear tanh transformation of the feature vector and the next

feed-forward layer with a relu activation function and one unit predicts a desired property.

2.4 IloctaBHOKa 3aJa4n MOJIEKYJIAPHOIO An3aiiHa KaK 3a-

Jadum o0yvdeHUus C HOJAKPeIlJIeHueM

This section describes how the stated problem of new SMILES generation can be formulated
in terms of Reinforcement Learning approach. The idea is to combine both generative G' and
predictive model D into one reinforcement learning system. The set of actions A is defined as
an alphabet of SMILES notation. The set of states S is defined as all possible strings in the
alphabet with lengths from 0 to some 7. The state sy with length 0 is unique and considered
to be an initial state. The state sy of length T' is called terminal state and it causes episode
to end. The subset of terminal states S* = {sr € S} of S which contains all the states sr
with length 7" is called the terminal states set. Reward r(sr) is calculated in the end of an
episode, when terminal state is reached. Intermediate rewards r(s;),t < T are equal to 0. In
these terms the generator network G can be treated as a policy approximation model. At
each time step ¢, 0 < t < T, G takes previous state s;_; as an input and estimates probability
distribution p(as|s;—1) of the next action. Afterwards, the next action a, is sampled from this
estimated probability. Reward r(sr) is a function of the predicted property of sy by the
predictive model D:

r(st) = f(D(s1)),

where f is chosen expertly depending on the task. Some examples of the functions f are

provided further in the computational experiment section. Given these notations and assumptions,
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the problem of generating chemical compounds with desired properties can be formulated as
a task of finding a vector of parameters 6 of policy network G which maximizes the expected

reward:

J(0) = E[r(sr)|so,0] = Z G(sr)r(sr) — max.

SsTES*
This sum iterates over the set S* of terminal states. In our case this set is exponential and
the sum can not be exactly computed. The trick is to approximate this sum as a mathematical

expectation by sampling terminal sequences from the model distribution:

J<9) = E[T(ST)’Sm 0] = EalNPa(al|80)Ea2~Pa(fl2|81) - 'EQTNPB(QT|ST—1)T(ST)'

So, the procedure for J(6) estimation is following: sequentially sample a; from the model
G for t from 0 to T. The unbiased estimation for J(6) is the sum of all rewards in every
time step which in our case equals to the reward for the terminal state as we assume that
intermediate rewards are equal to 0. As this quantity needed to me maximizes, we need
to compute its gradient. This can be done with a REINFORCE algorithm [33] which uses
approximation of mathematical expectation as a sum, which we provided above, and the
following trick:
O f (6)

00 (8) = FO)755 = FO)dullog (0)].

So, the gradient of J(#) can be written down as:

01 (0) = > [Oopo(sr)]r(sr) =

STES*

= > po(s7)[Blogpo(sr)Ir(sr) = Y pelsr) [Z o2 10gpe(at|3t—1)] r(sr) =

STES* STES* t=1T

= Eai~po(arlso)Eas~po(asisy) - - - Bagrpg(arlsr_1) [Z 9y 10gp9(at|5t—1)] r(sr),

t=1T

which gives as an algorithm for 9,J(6) estimation.
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I'maBa 3

BourancianreabHbIit IKCIIEPpMMEHT

3.1 Onucanme JaHHBIX

3.1.1 JlanHBIe AJII HOPOXKIAIOMIeil MoJen

For training generative model G' we took ChEMBL database of drug-like compounds [34],
which consists of approximately 1.5 million of SMILES strings.

We preprocessed the data by selecting from initial training dataset just those molecules,
which SMILES notation length is less than 100 characters. The length of 100 is chosen
because more than 97% of SMILES in training dataset are 100 characters or less (see Figure

3-1).

0.6 0.12

0.5 0.10
0.08
0.06
0.04

0.02

Proportion of molecules
Proportion of molecules

0 200 400 600 800 1000 1200 1400 1600 0

20 40 60 80 100
Length of SMILES strings Length of SMILES strings

Puc. 3-1: Initial (left) and truncated (right) distribution of SMILES’s lengths
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3.1.2 JlanHbIe AJIs pa3desionieii MoJein

We have dataset for three properties — melting temperature, partition coefficient log P
and pIC50 of JAK2 kinase. These datasets include 47000, 15000 and 15000 compounds

respectively. Every compound is labeled with a corresponding property.

3.2 IIponemypa obydeHust

We trained a stack-augmented RNN which was described in section 2.1. as a generative
model. This network has 1500 units in recurrent GRU layer [35] and 512 units in stack
augmentation layer. As a training dataset we took ChEMBL database of drug-like compounds
[34], which includes approximately 1.5 million of SMILES strings. The model was trained on
GPU for 10000 epochs. The learning curve is illustrated in Figure 3-2.

5.0
4.5
4.0
3.5

3.0

Loss

25

2.0

1:5

1.0
0 2000 4000 6000 8000 10000

Epochs of training

Puc. 3-2: Learning curve of generative model

As an object for training our generative model receives a sequence of 100 characters,
which can include several SMILES strings, separated by spaces. The last SMILES in a

training sequences is truncated, so that the length of the whole sequence doesn’t exceed 100
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characters.

3.3 Ilopoxgaromniass MoJieJib

The generative model has two modes of processing sequences — training and generating. In
training mode at each time step the generative network takes a current prefix of training
object and predicts the probability distribution of next character. Then, the next character
is sampled from this predicted probability distribution and is compared to the ground
truth. Afterwards, based on this comparison the cross-entropy loss function is calculated and
parameters of the model are updated. In generating mode at each time step the generative
network takes a prefix of already generated sequence and then, similar to training mode,
predicts probability distribution of next character and samples it from this predicted distribution.

In generating mode we do not update model parameters.

3.3.1 TI'eHepaliusi HEONITUMU3UPOBAHHBIX MOJIEKY/JI

To demonstrate the versatility of the baseline (unbiased) Stack RNN we generated a dataset
of over one million virtually synthesized compounds. Random examples of the generated
compounds are illustrated in Figure 3-3. Over 91% of generated structures, were valid
chemically-sensible molecules. The validity check was performed by the structure checker
from ChemAxon [36]. When compared with ChEMBL [34], model produced just about 1%
of structures from the training dataset. Additional comparison with ZINC15 database [37]
of 320M synthetically accessible drug-like molecules show match of about 4% structures.
Overall, this analysis suggests that generative Stack RNN model did not simply memorized

training SMILESs sequences but is capable to generate extremely diverse but realistic molecules.

3.4 Pazgendamomasa Moaesb

We trained three predictive models for three different properties — melting temperature, log
P and pIC50 for JAK2 kinase. Each model consists of embedding layer, which transforms

sequence of discrete tokens into a vector of 100 continuous numbers, LSTM layer with 100
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Puc. 3-3: Examples of molecules produced by generative model

units and tanh nonlinearity, one dense layers with 100 units and rectify nonlinearity function
and one dense layer with one unit and identity activation function. All three models were
trained with learning rate decay technique until convergence. As it was mentioned above,
the training datasets for melting temperature, log P and pIC50 for JAK2 kinase consist of
47000, 15000 and 15000 compounds respectively. These datasets were divided into training
and validation sets in a ratio of 3 : 1. The results and accuracy of the model are shown in

Figure 3-4.
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Puc. 3-4: Distribution of residuals for predictive models

3.5 Cucrema oby4deHHusi ¢ IIOJKpeIJIeHIEM

To explore the utility of the RL algorithm in a drug design setting we have set up a multiple
case studies that optimize three types of rewards: a) physical property, b) biological activity
and c¢) chemical substructure. For physical properties we selected melting temperature (Tm)
and octanol-water partition coefficient (logP). Inhibition potency in form of IC50 to JAK2
kinase was used as biological activity. Finally, number of benzene rings and number of
substituents (like ~-OH, -NH2, -CH3 —CN, etc.) was used as a structural reward. Figures 3-6,
3-9, 3-13, 3-16a, and 3-16b show distribution of predicted properties of interest before and
after experiments. In both cases, we sampled 10000 molecules by the default and optimized
generative models and calculated their properties with a corresponding predictive model.
Values of the substructure features were calculated directly from the 2D structure. Table 4.1

summarizes analysis of generated molecules and descriptive statistics.

3.5.1 OnruMmsalys TeMIiepaTypbl IJIaABJIEHUS

In this experiment we set two goals to minimize and maximize the target property. Upon
minimization the mean of the distribution was shifted by 44°C". Optimized generator virtually
synthesized simple hydrocarbons like butane, and poly-halogenated compounds C'F>Cly and
Ce¢H4F,. C'F, molecule has a lowest T,, = —184°C' in the produced dataset. This property
minimization strategy is extremely effective, it allowed to discover molecules in the regions
of chemical space far beyond available in the training examples. In the maximization regime
mean of the melting temperature is increased by 20°C' to 200°C. Generator synthesized
substantially more complex molecules with abundance of Sulphur heterocycles, phosphates

as well as conjugated double bonds. The reward functions in both cases are defined as
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piecewise linear function from melting temperature (see Figure 3-5). Figure 3-6 demonstrates
the results of optimization and Figures 3-7 and 3-8 provide examples of generated molecules

both for minimization and maximization regimes.

Reward

5]

200 <100 0 100 200 300 400 500 600 200 <100 0 100 200 300 400 500 600
Melting temperature Melting temperature

(a) Reward function for melting temperature(b) Reward function for melting temperature
minimization maximization

Puc. 3-5: Reward function for melting temperature optimization
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Puc. 3-7: Examples of molecules with minimized melting temperature
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Puc. 3-8: Examples of molecules with maximized melting temperature

3.6 OnrmMvuzanusa JunoPuIbLHOCTHA

In the second experiment we set the goal to optimize the log P property values of generated
molecules. To better mimic requirements of drug-likeliness instead of property minimization
we imposed to the range. The reward function in this case was defined as a piecewise linear
function of log P with a constant region from 1.0 to 4.0 (see Figure 3-10). In other words, we
set the goal to uniformly synthesize molecules according to a typical Lipinski’s constraints.
After training 88% of generated molecules were within logP from 0 to 5. The results of
optimization are demonstrated in Figure 3-9. Figure 3-11 show some examples of generated

molecules.

Partition coefficient

Untrained Optimized

Puc. 3-9: Distribution of untrained and optimized log P
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Puc. 3-11: Examples of molecules with optimized partition coefficient

3.7 Onrtumunsaimss OMOJIOTNYIECKOil aKTUBHOCTU

In the third experiment, perhaps most relevant to the practical drug discovery application
we directly minimized and maximized pIC50 values for JAK2 kinase. The reward function
both in cases was defined as exponential functions of pIC50 (see Figure 3-12). The results
of optimization are demonstrated in Figure 3-13. With minimization, the mean of predicted
pIC50 distribution was shifted by about one unit. However, distribution is heavily tailed,
and 24% of molecules are predicted to have practically no activity (pIC50 < 4). In the
maximization strategy, properties of generated molecules were more tightly distributed bet.
In both cases models virtually synthesized known and novel compounds based on one scaffold
as well as suggested new scaffolds. Overall, system retrospectively discovered multiple commercially
available compounds deposited in ZINC database. Figures 3-14 and 3-15 show some examples

of generated molecules both for JAK2 activity minimization and maximization.

25



2 40

20

Reward
Reward

0 2 4 6 8 10 12 -
pIC50 for JAK2 kinase pIC30 for JAK2 kinase

(a) Reward function for pIC50 of JAK2 kinase(b) Reward function for pIC50 of JAK2 kinase

minimization maximization

Puc. 3-12: Reward function for pIC50 of JAK2 kinase optimization

pIC50 for jak2 kinase

Minimized Untrained Maximized

Puc. 3-13: Distribution of minimized, untrained and maximized pIC50 of JAK2 kinase

&, o
L @f“%" 0 Qé {Q

Puc. 3-14: Examples of molecules with minimized pIC50 for jak2 kinase
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3.8 OmnruMmusalys CTPYKTYPHBIX CBOWCTB

Finally, we also performed two simple experiments mimicking biasing chemical libraries to a
user-defined substructure without predicting any property. We defined the reward function

as the exponent of a) number of monosubstitured benzene rings (-Ph) (see Figure 3-17a)
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Puc. 3-15: Examples of molecules with maximized pIC50 for jak2 kinase

and b) total number of small groups substituents (see Figure 3-17b). Among all case studies

described, structure bias was easiest to optimize. Figures 3-16a and 3-16b illustrate results

of optimization and Figures 3-18 and 3-19 show some examples of generated molecules.
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Puc. 3-16: Distributions of structure bias optimization
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Puc. 3-17: Reward function for structure bias optimization

27



Puc. 3-18: Examples of molecules with maximized number of 6 carbon ring
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Puc. 3-19: Examples of molecules with maximized number of hydrogen substituents
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4.1 Pe3yabTaTbl 1 aHAJIU3 MOAEIN

Table 4.1 summarizes results of all the experiments conducted in the thesis. This table shows
decrease in a proportion of valid molecules after optimization. We explain this phenomenon
by the weaknesses of predictive model D. L.e. generative model G tends to find some local
optima of reward function, that correspond to invalid molecules, but predictive model D
assigns these molecules high rewards. Our explanation is supported by the results of structure
bias optimization experiments, as in these experiments we didn’t use any predictive models
and decrease in proportion of valid molecules wasn’t so significant. We also notice, that among
the experiments which include predictive models, experiment with log P optimization and
bioactivity of JAK2 kinase show higher proportion of valid molecules and, at the same time,

corresponding predictive models have higher quality R? = 0.91.

4.2 Huatepuperaliusd nmapamMeTpoB PeKyppPeHTHOI HeiipoH-

HOII ceTu

In this section we demonstrate how recurrent neural network can memorize and process
some properties of the SMILES string that it is currently processing. We looked inside

the neurons gate activations of the neural network while it processes the input data (see
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Tabmuma 4.1: Comparison of statistics for optimized, untrained and training molecules

datasets
Mean . Proportion
. Proportion
Proportion | Mean property of matches
. of matches .
Property of valid | molar value ith ZINC with
molecules | mass through gatabase ChEMBL
dataset database
untrained 91% 435.4 181.30 4.7% 1.5%
Melti
te;;:i ture | minimized | 31% 279.6 137.17 4.6% 1.6%
maximized 53% 413.2 200.715 2.4% 0.9%
PIC50 of untrained 91% 435.4 5.70 4.7% 1.5%
jak2 minimized 60% 481.8 4.89 2.5% 1.0%
kinase
maximized 45% 275.4 7.85 4.5% 1.8%
untrained 91% 435.4 3.63 4.7% 1.5%
log P optimized 70% 369.7 2.58 5.8% 1.8%
untrained 91% 435.4 0.59 4.7% 1.5%
Number of .
benzene rings optimized 83% 496.0 2.41 5.5% 1.6%
untrained 91% 435.4 3.8 4.7% 1.5%
Number of .
substituents | optimized 80% 471.7 7.93 3.1% 0.7%

Figure 4-1). In this figure each line corresponds to activations of one neuron at different

time steps of processing SMILES string. Each letter is coloured according to the value of

activation in cool-warm colormap from dark blue to dark red — from —1 to 1. We discovered

that that our RNN has several interpretable cells, that can be divided into two groups —

chemically sensible, that captures chemical groups, such as aromatic moiety, carbonyl group

or heterocyclic nitrogen, and syntactic, that, for example, captures brackets or decides when

the molecule ends. We also discovered, that some neurons have opposite ones, which get

deactivated when processing the same group.
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Puc. 4-1: Examples of RNN neurons activation values

4.3 BwuzyaJjausalius pe3yJibTaTOB

In this section we visualize generated molecules in chemical space using t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique for dimensionality reduction [38]. We generated
datasets for melting temperature, bio activity of JAK2 kinase and log P with corresponding
optimized generative models GG, then for every molecule we calculated a vector of representation
as an output from the feed-forward layer with relu activation function in the predictive model
D for the corresponding property and calculated its 2D projection using t-SNE. Obtained
projections are illustrated in Figures 4-2, 4-3, 4-4. In this figure every point corresponds to
a molecule and is colored according to its property value in a cool-warm colormap, where
dark blue color corresponds to low values and dark red — to high values. For bioactivity
of JAK2 kinase and log P t-SNE diagrams have well defined clusters, while for melting
temperature there are no such clusters. This observation can be explained by the fact, that
melting temperature depends not only on a structure of one separate molecule, but also on

intermolecular forces and how the molecules are packed in a substance.
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Puc. 4-4: t-SNE diagram for melting temperature
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SaKJII0OYeHIe

In this thesis we proposed end-to-end deep learning system for de movo molecular design.
The system is data-driven and does not rely on hand-crafted features. Deep learning is
poised to transform drug discovery and computational chemistry. As a pilot application,
we systematically demonstrate how Deep Reinforcement Learning model can be used for de
novo computational drug design. In experimental part we showed how Deep RL system can
generate chemically sensible molecules with optimized properties. We took into consideration
five different properties, which include physical, chemical, bio-activity and structural one.
To out best knowledge, this is a first case of optimizing bio-activity property, described
in scientific literature. Further development of the system includes overcoming existing
limitations such as predictive model weaknesses exploitation and also extending the system

for optimizing several properties simultaneously.
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