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Consider sample density:
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It can be accurately modelled with existing parametric family -
Normal
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What to do if no parametric model fits well?
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Mixture models

Z
p(x) = ¢zp(x;0z)
z=1

@ Z - number of components
@ ¢,, z=1,2,...Z - mixture component probabilities,
¢z 20,37 1 ¢:=1
@ p(x;0;) - component density functions
e Parameters of mixture model © = {¢,,0,, z=1,2,...7}

p(x, 6;) may be of single or different parametric families.
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Gaussians model continious r.v. on (—o0, +00).
p(X762) = N(X,/,Lz,zz), 0, = {}U‘ZaZZ}-

V4
P(X) :Z¢ZN(X7NZ7ZZ) (1)
z=1
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Mixtures of other distributions

Mixture of random variables:
@ continious, distributed on (—oo, +00)

continious, distributed on [a, 00)
@ continious, distributed on [a, b]
e discrete, distributed on [a, c0)

e discrete, distributed on [a, b]
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Mixtures of other distributions

Mixture of random variables:
@ continious, distributed on (—oo, +00)
e Normal, Laplace, Student

continious, distributed on [a, 00)
o Gamma

@ continious, distributed on [a, b]
o Beta

e discrete, distributed on [a, c0)
e Poisson

e discrete, distributed on [a, b]

e Binomial
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Sampling from mixture

© Sample mixture component z with random probabilities

¢17 ¢27 ¢Z
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Sampling from mixture

© Sample mixture component z with random probabilities
¢13 ¢2a ¢Z
o to do that we sample u ~ Uniform[0, 1] and select component

zif Y o <u< Y ¢
@ Sample observation x ~ p(x|6;)
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Classification using mixtures

Model within class probability with mixtures:
Zy
p(X|y) = Z ¢y,zp(X; ey,z)
z=1

where Z,, m, , and p(x; 6, ) are specific for each class y.
Bayes decision rule:
y = argmax Ay p(y)p(x|y)

Ay - cost for misclassifying class y

p(y) - prior for class y
p(x|y) - within class probability
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EM-algorithm for normal mixtures

Initialize ¢;,p; and %;, j=1,2,..g.

repeat while stopping condition not satisfied:
E-step. Calculate correspondences of x,
to component z:
for n=1,2,...N:
for z=1,2,...Z:
W, — LzNGninz,Ts)
N2 3k dkN(xnipk Zk)
M-step. Update component parameters:

for z=1,2,..7:

—~ 1 N
¢z = N Zn:1 Whz
o~ __ Z,,N:]_ WnzXn

I’LZ - ZN w

n=1 Wnz
. ) -
Y = st S Wee (n = 12) (%0 — )
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Interpretation

_ _ P(z,xa)  P(z,xa)
e = P = Ty = S Pl
P(2)P(xplz)  6N(xni iz X2)

>k PU)P(xalk) S0, N (xi ik, Zi)

az,ﬁz, fz are weighted averages, weighted with w,, = P(z|x,):

N N
(Z N 1 ~ anl WnzXn
z — N E Whnz ,U/z — N
n=1 Zn:l Whnz

N

—~ 1 . .

1, = =N Z Whz (Xn — Tiz) (Xn — NZ)T (2)
Zn:l Whnz n=1
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K-means algorithm

@ Suppose we want to cluster our data into g clusters.
o Cluster / has a center p;, i=1,2,...g.

e Consider the task of minimizing

N

> ol pz,)? = min (3)
n=1 Z1 40 ZN L - g

where z; € {1,2,...g} is cluster assignment for x; and p1,...ug
are cluster centers.
@ Direct optimization requires full search and is impractical.

@ K-means is a suboptimal algorithm for optimizing (3).
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K-means algorithm

Initialize u;, j=1,2,...g

repeat while stop condition not satisfied:
for i=1,2,..N:
zj = argminje(12 gy X — il
for j=1,2,..g:

_ 1 N _
Hj = SN Tz=i] Zn:;l I[zy = j]xi

Possible stop conditions:

@ cluster assignments z;,...zy stop to change (typical)

@ maximum number of iterations reached

@ cluster means {u;, i =1,2,...g} stop changing
significantly
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K-means versus EM clustering
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K-means versus EM clustering

e For each x, EM algorithm gives w,, = p(z|x,).

@ This is soft or probabilistic clustering into Z clusters, having
priors ¢1, ...¢7z and probability distributions
p(x; 01), ...p(x; 0z).

@ We can make it hard clustering using z, = arg max, wy,;.

o EM clustering becomes K-means clustering when:

applied to Gaussians

with equal priors

with unity covariance matrices
with hard clustering
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Initialization for Gaussian mixture EM

@ Fit K-means to x{, xo, ...xy, obtain cluster centers
Wz, z =12 .7 and cluster assignments z, z, ...zp.

@ Initialize mixture probabilities

R N
¢, x Zﬂ[zn = 7|

n=1

© Initialize Gaussian means with cluster centers p,, z=1,2,...7Z.

@ Initialize Gaussian covariance matrices with

iz: ]IZ,,—Z Xn_zT
i H[ZHZZ]Z[ ] G — 1) (0 — 1)
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Properties of EM

Many local optima exist

e in particular likelihood— oo when p, = x; and 0, — 0

Only local optimum is found with EM

Results depends on initialization

e It is common to run algorithm multiple times with different
initializations and then select the result maximizing the
likelihood function.

@ Number of components may be selected with:
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Properties of EM

Many local optima exist

e in particular likelihood— oo when p, = x; and 0, — 0

Only local optimum is found with EM

Results depends on initialization

e It is common to run algorithm multiple times with different
initializations and then select the result maximizing the
likelihood function.

@ Number of components may be selected with:

e cross-validation on the final task

o out-of-sample maximum likelihood

o statistical tests, heuristics, such as AIC/BIC information
criteria
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Simplifications of Gaussian mixtures

o ¥, € RP*D requires M parameters.

. . . D(D+1
@ Covariance matrices for Z components require zb(0+1)

2
parameters.

e Components can be poorly identified when
° ZM is large compared to N
e when components are not well separated

@ In these cases we can impose restrictions on covariance
matrices.
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Unrestricted covariance matrices

o full covariance matrices ¥,, z=1,2,...Z.

full
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Common covariance matrix

0T =Yy =..=Y7

commaon
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—di 2 2 2
o X, =diag{0;,,075...0; p}

diag
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02, = 03/, | € RPxD . identity matrix

spherical
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