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Sample density

Consider sample density:
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Parametric density approximation

It can be accurately modelled with existing parametric family -

Normal
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Non-standard sample distribution

What to do if no parametric model �ts well?
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Mixture models

p(x) =
Z∑

z=1

φzp(x ; θz)

Z - number of components

φz , z = 1, 2, ...Z - mixture component probabilities,

φz ≥ 0,
∑Z

z=1
φz = 1

p(x ; θz) - component density functions

Parameters of mixture model Θ = {φz , θz , z = 1, 2, ...Z}

p(x , θz) may be of single or di�erent parametric families.
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Mixture of Gaussians

Gaussians model continious r.v. on (−∞,+∞).
p(x , θz) = N(x , µz ,Σz), θz = {µz ,Σz}.

p(x) =
Z∑

z=1

φzN(x , µz ,Σz) (1)
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Mixtures of other distributions

Mixture of random variables:

continious, distributed on (−∞,+∞)

Normal, Laplace, Student

continious, distributed on [a,∞)

Gamma

continious, distributed on [a, b]

Beta

discrete, distributed on [a,∞)

Poisson

discrete, distributed on [a, b]

Binomial
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Sampling from mixture

1 Sample mixture component z with random probabilities

φ1, φ2, ...φZ

to do that we sample u ∼ Uniform[0, 1] and select component

z if
∑z−1

k=1
φk < u ≤

∑z
k=1

φz

2 Sample observation x ∼ p(x |θz)
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Classi�cation using mixtures

Model within class probability with mixtures:

p(x |y) =

Zy∑
z=1

φy ,zp(x ; θy ,z)

where Zy , πy ,z and p(x ; θy ,z) are speci�c for each class y .

Bayes decision rule:

ŷ = argmax
y
λyp(y)p(x |y)

λy - cost for misclassifying class y
p(y) - prior for class y
p(x |y) - within class probability
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EM-algorithm for normal mixtures

Initialize φj , µj and Σj, j = 1, 2, ...g.

repeat while stopping condition not satisfied:
E-step. Calculate correspondences of xn

to component z:
for n = 1, 2, ...N:

for z = 1, 2, ...Z:

wnz = φzN(xn ;µz ,Σz )∑
k φkN(xn ;µk ,Σk )

# =p(z|x(n))

M-step. Update component parameters:
for z = 1, 2, ...Z:

φ̂z = 1
N

∑N
n=1 wnz

µ̂z =
∑N

n=1 wnz xn∑N
n=1 wnz

Σ̂z = 1∑N
n=1 wnz

∑N
n=1 wnz (xn − µ̂z) (xn − µ̂z)T
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Interpretation

wnz = P(z |xn) =
P(z , xn)

P(xn)
=

P(z , xn)∑
k P(k , xn)

=

=
P(z)P(xn|z)∑
k P(k)P(xn|k)

=
φ̂zN(xn; µ̂z,Σ̂z)∑
k φ̂kN(xn; µ̂k , Σ̂k)

φ̂z , µ̂z , Σ̂z are weighted averages, weighted with wnz = P(z |xn):

φ̂z =
1

N

N∑
n=1

wnz µ̂z =

∑N
n=1

wnzxn∑N
n=1

wnz

Σ̂z =
1∑N

n=1
wnz

N∑
n=1

wnz (xn − µ̂z) (xn − µ̂z)T (2)
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K-means algorithm

Suppose we want to cluster our data into g clusters.

Cluster i has a center µi , i=1,2,...g.

Consider the task of minimizing

N∑
n=1

ρ(xn, µzn)2 → min
z1,...zN ,µ1,...µg

(3)

where zi ∈ {1, 2, ...g} is cluster assignment for xi and µ1, ...µg
are cluster centers.

Direct optimization requires full search and is impractical.

K-means is a suboptimal algorithm for optimizing (3).
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K-means algorithm

Initialize µj, j = 1, 2, ...g # usually by setting them
# to randomly chosen x(n)

repeat while stop condition not satisfied:
for i = 1, 2, ...N: # cluster assignements

zi = argminj∈{1,2,...g} ||xi − µj ||
for j = 1, 2, ...g: # means recalculation

µj = 1∑N
n=1 I[zn=j]

∑N
n=1 I[zn = j ]xi

Possible stop conditions:

cluster assignments z1, ...zN stop to change (typical)

maximum number of iterations reached

cluster means {µi , i = 1, 2, ...g} stop changing

signi�cantly
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K-means versus EM clustering

For each xn EM algorithm gives wnz = p(z |xn).

This is soft or probabilistic clustering into Z clusters, having

priors φ1, ...φZ and probability distributions

p(x ; θ1), ...p(x ; θZ ).

We can make it hard clustering using zn = argmaxz wnz .

EM clustering becomes K-means clustering when:

applied to Gaussians
with equal priors
with unity covariance matrices
with hard clustering
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Initialization for Gaussian mixture EM

1 Fit K-means to x1, x2, ...xN , obtain cluster centers

µz , z = 1, 2, ...Z and cluster assignments z1, z2, ...zN .

2 Initialize mixture probabilities

φ̂z ∝
N∑

n=1

I[zn = z ]

3 Initialize Gaussian means with cluster centers µz , z = 1, 2, ...Z .

4 Initialize Gaussian covariance matrices with

Σ̂z =
1∑N

n=1
I[zn = z ]

N∑
n=1

I[zn = z ] (xn − µz) (xn − µz)T
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K-means

Properties of EM

Many local optima exist

in particular likelihood→∞ when µz = xi and σz → 0

Only local optimum is found with EM

Results depends on initialization

It is common to run algorithm multiple times with di�erent
initializations and then select the result maximizing the
likelihood function.

Number of components may be selected with:

cross-validation on the �nal task
out-of-sample maximum likelihood
statistical tests, heuristics, such as AIC/BIC information
criteria
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Simpli�cations of Gaussian mixtures

Σz ∈ RDxD requires D(D+1)
2

parameters.

Covariance matrices for Z components require Z D(D+1)
2

parameters.

Components can be poorly identi�ed when

Z D(D+1)
2

is large compared to N
when components are not well separated

In these cases we can impose restrictions on covariance

matrices.
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Unrestricted covariance matrices

full covariance matrices Σz , z = 1, 2, ...Z .
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Simpli�cations of Gaussian mixtures

Common covariance matrix

Σ1 = Σ2 = ... = ΣZ
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Diagonal covariance matrices

Σz = diag{σ2z,1, σ2z,2...σ2z,D}
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Simpli�cations of Gaussian mixtures

Spherical matrices

Σz = σ2z I , I ∈ RDxD - identity matrix
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