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Machine Translation 



Parallel data

Parallel corpora:
• Europarl
• Movie subtitles 
• Translated news, books
• Wikipedia (comparable)
• http://opus.lingfil.uu.se/ 

Lot’s of problems with data:
• Noisy
• Specific domain
• Rare language pairs
• Not aligned, not enough



Evaluation
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Evaluation

• How to compare two arbitrary translations?
• Low agreement rate even between reviewers
• BLEU score – a popular automatic technique

1-grams: 4 / 6
2-grams: 3 / 5
3-grams: 2 / 4
4-grams: 1 / 3
Brevity penalty : min(1, 6 / 5)

Reference:            E-mail was sent on Tuesday. 

System output:     The letter was sent on Tuesday.
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The mandatory slide

Henry S. Thompson, https://www.inf.ed.ac.uk/teaching/courses/anlp/lectures/30/

GenerationAnalysis

Source Target

Semantic transfer

Syntactic transfer

Direct

Interlingual



Roller-coaster of machine translation

1954 Georgetown IBM experiment Russian to English:
• Claimed that MT would be solved within 3-5 years.

1966 ALPAC report:

• Concluded that MT was too expensive and ineffective.



Two main paradigms

Statistical Machine Translation (SMT):

• 1988 – Word-based models (IBM models)
• 2003 – Phrase-based models (Philip Koehn)
• 2006 – Google Translate (and Moses, next year)

Neural Machine Translation (NMT):

• 2013 – First papers on pure NMT
• 2015 – NMT enters shared tasks (WMT, IWSLT)
• 2016 – Launched in production in companies



Zero-shot translation

Google Neural 
Machine 

Translation

English

Korean

Japanese

English

Korean

Japanese

https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html



Noisy channel: 
said in English, received in French



The main equation

1993 Brown et al., “The mathematics of statistical machine translation”
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p(e|f)

• Given: French (foreign) sentence f, 
• Find: English translation e:
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The main equation

1993 Brown et al., “The mathematics of statistical machine translation”

e⇤ = argmax
e2E

p(e|f)

= argmax
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• Given: French (foreign) sentence f, 
• Find: English translation e:



Why is it easier to deal with?

Language model Translation model

• models the fluency of the translation

• models the adequacy of the translation

• is the search problem implemented by a decoderargmax

p(e)

p(f |e)

e⇤ = argmax
e2E

p(e) p(f |e)



Noisy Chanel

Le lettre a été
envoyé le Mardi.

Channel output 

The letter was 
sent on Tuesday.

Channel source

Noisy channel

p(f |e)

p(e)



Language model: p(e)

<EOS>

goodHave a

Have a good

day

N-gram models or neural networks:

p(e) = p(e1)p(e2|e1) . . . p(ek|e1 . . . ek�1)



f (Foreign):

e (English):

Translation model: p(f|e)

Крику много, а шерсти мало.

Great cry and little wool.

p(f |e) = p(f1, f2, . . . fJ |e1, e2, . . . eI)



Translation model: p(f|e)

We could learn translation probabilities for separate words: 

0.1

0.1 0.2 0.4 0.1

0.8 0.2

0.2 0.3 0.5

0.2 0.7 0.1

0.9 0.1

wool

p(fj |ei)

Vf

Ve



But how to build the probability for the whole sentences?

Translation model: p(f|e)

p(fj |ei)p(f |e) = Some Magic 
Factorization



But how to build the probability for the whole sentences?

Reorderings:

Translation model: p(f|e)

p(fj |ei)p(f |e) = Some Magic 
Factorization

Крику много, а шерсти мало.

Great cry and little wool.



Word Alignments

One-to-many and many-to-one:

Аппетит приходит во время еды.

The appetite comes with eating.

Words can disappear or appear from nowhere:

У каждой пули свое назначение.

Every bullet has its billet. 



Word Alignment Models



Word Alignments

“As English not all languages words in the same order put. 
Hmmmmmm.» - Yoda



Word alignment task

Given a corpus of (e, f) sentence pairs:
• English, source: 

• Foreign, target:

Predict:
• Alignments a between e and f:

The appetite comes with eating.

Аппетит приходит во время еды.

a?
e: 

f: 

e = (e1, e2, . . . eI)

f = (f1, f2, . . . fJ)



Word alignment matrix

The

appetite
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Each target word is allowed to have only one source!

a 1
=

2

a 2
=
3

a 3
=

4

a 4
=
4

a 5
=
5

Word alignment matrix



Sketch of learning algorithm

1. Probabilistic model (generative story)
Given e, model the generation of f:

The most creative step:
• How do we parametrize the model?
• Is it too complicated or too unrealistic?

p(f, a|e,⇥) = ?
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Sketch of learning algorithm

1. Probabilistic model (generative story)
Given e, model the generation of f:

The most creative step:
• How do we parametrize the model?
• Is it too complicated or too unrealistic?

p(f, a|e,⇥) = ?

observable
variables

hidden
variables

parameters



Sketch of learning algorithm

2. Likelihood maximization for the incomplete data:

p(f |e,⇥) =
X

a

p(f, a|e,⇥) ! max
⇥



Sketch of learning algorithm

2. Likelihood maximization for the incomplete data:

3. EM-algorithm to the rescue! 

Iterative process:
• E-step: estimates posterior probabilities for alignments
• M-step: updates        – parameters of the model

p(f |e,⇥) =
X

a

p(f, a|e,⇥) ! max
⇥

⇥



Generative story

1. Choose the length of the foreign sentence

p(f, a|e) = p(J |e)
JY

j=1

p(aj |aj�1
1 , f j�1

1 , J, e)⇥
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Generative story

1. Choose the length of the foreign sentence
2. Choose an alignment for each word (given lots of things)
3. Choose the word (given lots of things)

p(f, a|e) = p(J |e)
JY

j=1

p(aj |aj�1
1 , f j�1

1 , J, e)⇥

⇥p(fj |aj , aj�1
1 , f j�1

1 , J, e)



IBM model 1

Uniform prior Translation table
t(fj |eaj )

+ The model is simple and has not too many parameters
– The alignment prior does not depend on word positions

"

p(f, a|e) = p(J |e)
JY

j=1

p(aj)p(fj |aj , e)



Translation table

0.1

0.1 0.2 0.4 0.1

0.8 0.2

0.2 0.3 0.5

0.2 0.7 0.1

0.9 0.1

wool

p(fj |ei)

Vf

Ve



IBM model 2

Position-based prior
d(aj |j, I, J)

Translation table
t(fj |eaj )

p(f, a|e) = p(J |e)
JY

j=1

p(aj |j, I, J)p(fj |aj , e)

+ The alignments depend on position-based prior
– Quite a lot of parameters for the alignments



Position-based prior

• For each pair of the lengths of the sentences:
• matrix of probabilities

Dyer et al. A Simple, Fast, and Effective Reparameterization of IBM Model 2, 2013

I

J

I ⇥ J



Re-parametrization, Dyer et. al 2013

• If we know, it’s going to be diagonal – let’s model it diagonal!
• Much less parameters, easier to train on small data

�

Dyer et al. A Simple, Fast, and Effective Reparameterization of IBM Model 2, 2013

I

J



HMM for the prior

p(f, a|e) =
JY

j=1

p(aj |aj�1, I, J)p(fj |aj , e)

Transition probabilities
d(aj |aj�1, I, J) t(fj |eaj )

Translation table

All cats are grey in the dark.

В темноте все кошки серы.

e:

f:



Resume

• IBM models – first working systems of MT

• Lot’s of problems with models 1 and 2:
• How to deal with spurious words 
• How to control fertility 
• ….

• Most importantly, how to do many-to-many alignments?
• Phrased-based machine translation (Koehn’s book)



Encoder-decoder architecture



Sequence to sequence

Encoder

Все кошки серы

All cats are gray

v

Decoder



Sequence to sequence

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Network, 2014.

h1 h2 h3

Все кошки серы <EOS> All cats are gray

<EOS>grayarecatsAll

v s1 s2 s3 s4



Sequence to sequence
<EOS>grayarecatsAll

Все кошки серы <EOS> All cats are gray



Sequence to sequence

Cho et. al. Learning Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation, 2014.

Все кошки серы <EOS>

<EOS>grayarecatsAll

h1 h2 h3 v

s1 s2 s3 s4 s5



Sequence to sequence

• Encoder: maps the source sequence to the hidden vector

RNN: 

• Decoder: performs language modeling given this vector

RNN: 

• Prediction (the simplest way):

p(y1, . . . yJ |x1, . . . xI) =
JY

j=1

p(yj |v, y1, . . . yj�1)

hi = f(hi�1, xi)

p(yj |v, y1, . . . yj�1) = softmax (Usj + b)

v = hI

sj = g(sj�1, [yj�1, v])



Hidden representations are good…

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Network, 2014.



… but still a bottleneck

Bottleneck!
Все кошки серы

All cats are gray

Decoder

vEncoder



Attention mechanism



Attention mechanism

Bahdanau et. al - Neural Machine Translation by jointly learning to align and translate, 2015.

…h1 h2 h3 hI

yj�1 yj+1yj

↵1j ↵
Ij

↵
3
j

sjsj�1 sj+1

x1 x2 x3 xI

Encoder

Decoder

Attention

… …

↵ 2j



• Encoder states are weighted to obtain the representation 

relevant to the decoder state:

• The weights are learnt and should find the most
relevant encoder positions:

Attention mechanism

vj =
IX

i=1

↵ijhi

↵ij =
exp(sim(hi, sj�1))PI

i0=1 exp(sim(hi0 , sj�1))



How to compute attention weights?

• Additive attention:

• Multiplicative attention:

• Dot product also works:

sim(hi, sj) = hT
i Wsj

sim(hi, sj) = hT
i sj

sim(hi, sj) = wT tanh(Whhi +Wssj)



• Still encoder-decoder architecture with RNNs:

• But the source representations differ for each position j 
of the decoder.

Put all together

p(y1, . . . yJ |x1, . . . xI) =
JY

j=1

p(yj |vj , y1, . . . yj�1)

hi = f(hi�1, xi) sj = g(sj�1, [yj�1, vj ])



Helps for long sentences

Bahdanau et. al. Neural Machine Translation by jointly learning to align and translate, 2015.

NMT with attention



Example: attention (alignments)

Bahdanau et. al. Neural Machine Translation by jointly learning to align and translate, 2015.



Is the attention similar to what humans do?

• For humans: saves time

Attention saves time when reading (i.e. we look only to 
the relevant parts of the sentence).

• For machines: wastes time

To compute the attention weights, the model carefully 
examines ALL the positions, thus wastes even more time.



Local attention

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

1. Find the most relevant position in the source

• Monotonic alignments:

• Predictive alignments:  

2.   Attend only positions within a window 

• Compute scores as usual

• Probably multiply by a Gaussian centered in 

aj = j

aj = I · �(bT tanh(Wsj))

aj

[aj � h;aj + h]

aj



Global vs local attention

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

System Perplexity BLEU

global (location)

global (dot)

global (mult)

6.4

6.1

6.1

19.3

20.5

19.5

local-m (dot)

local-m (mult)

>7.0

6.2

x

20.4

local-p (dot)

local-p (mult)

6.6

5.9

19.6

20.9



Global vs local attention

Luong et. al. Effective Approaches to Attention-based Neural Machine Translation, 2015.

System Perplexity BLEU

global (location)

global (dot)

global (mult)

6.4

6.1

6.1

19.3

20.5

19.5

local-m (dot)

local-m (mult)

>7.0

6.2

x

20.4

local-p (dot)

local-p (mult)

6.6

5.9

19.6

20.9

Wsj

hT
i sj

hT
i Wsj



How to deal with a vocabulary?



Outline

• Computing softmax for a large vocabulary is slow!

• Hierarchical softmax

• Even a large vocabulary has OOV words:

• Copy mechanism 

• Sub-word modeling

• Word-character hybrid models

• Byte-pair encoding
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• Even a large vocabulary has OOV words:

• Copy mechanism 

• Sub-word modeling

• Word-character hybrid models

• Byte-pair encoding



Hierarchical softmax

Each word is uniquely represented by a binary code:

• 0 means “go left”, 1 means “go right”

zebra dog cat

cowhorse
01 10 11

001000



Hierarchical softmax

E.g. for zebra the code is d = (0, 1)

d1 d2

zebra dog cat

cowhorse
01 10 11

001000



Scaling softmax

Express the probability of a word (zebra) as a product of 

probabilities of the binary decisions along the path  ( , ).

Do you believe that it sums to 1?

d1 d2

p(wn = w|wn�1
1 ) =

Y

i

p(di|wn�1
1 )



Hierarchical softmax
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Hierarchical softmax
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cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6
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0.7 ･ 0.8 ･ 0.9
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0.3 ･ 0.4
0.3 ･ 0.6

+



Hierarchical softmax

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6

0.7 ･ 0.8 
0.7 ･ 0.2
0.3 ･ 0.4
0.3 ･ 0.6

+



Hierarchical softmax

0.7 ･ 0.8 
0.7 ･ 0.2
0.3 ･ 0.4
0.3 ･ 0.6

+

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6



Hierarchical softmax

0.7
0.3 ･ 0.4
0.3 ･ 0.6+

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6



Hierarchical softmax

0.7
0.3 ･ 0.4
0.3 ･ 0.6+

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6



Hierarchical softmax

+

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6

0.7
0.3



Hierarchical softmax

0.7
0.3

+

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6



Hierarchical softmax

1.0

+ Congratulations!

zebra dog cat

cowhorse
01 10 11

001000

0.7 0.3

0.8

0.1 0.9

0.2 0.4 0.6



Hierarchical softmax

Model binary decisions along the path in the tree:

How to construct a tree (balanced vs. semantic):

• Based on some pre-built ontology

• Based on semantic clustering from data

• Huffman tree

• Random

p(wn = w|wn�1
1 ) =

Y

i

p(di|wn�1
1 )



Outline

• Computing softmax for a large vocabulary is slow!

• Hierarchical softmax

• Even a large vocabulary has OOV words:

• Copy mechanism 
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• Word-character hybrid models

• Byte-pair encoding
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Copy mechanism

• Scaling softmax is insufficient!

• What do we do with OOV words?

• Names, numbers, rare words… 

The       UNK portico    in      UNK

Le     portique UNK      de      UNK

Look-up in a dictionary
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ecotax



Copy mechanism

• Scaling softmax is insufficient!

• What do we do with OOV words?

• Names, numbers, rare words… 

Pont-de-Buis

écotaxe

The       UNK portico    in      UNK

Le     portique UNK      de      UNK

ecotax

Copy name

Pont-de-Buis

Look-up in a dictionary



Copy mechanism

Algorithm:

• Provide word alignments in train time

• Learn relative positions for UNK tokens with NMT

• Post-process the translation:

• Copy the source word

• Look up in a dictionary

Simple, but super useful technique!



Towards open vocabulary

Still problems:

• Transliteration: Christopher ↦ Kryštof

• Multi-word alignment: Solar system ↦ Sonnensystem

• Rich morphology: nejneobhospodařovávatelnějšímu

• Informal spelling: goooooood morning !!!!!



Outline
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Character-based models

Ling, et. al. Finding Function in Form: Compositional 
Character Models for Open Vocabulary Word 
Representation. EMNLP 2015.

Kim, et. al. Character-Aware Neural Language Models. 
AAAI 2016.

Marta R. Costa-jussà and José A. R. Fonollosa. Character-
based Neural Machine Translation. ACL 2016.

Character-based encoder is good 
for source languages with rich 
morphology!

• Bi-LSTMs to build word 
embeddings from characters

• CNNs on characters



Hybrid models: the best of two worlds

• Work mostly on words level 
• Go to characters when needed

Thang Luong and Chris Manning. Achieving Open Vocabulary Neural Machine Translation with 
Hybrid Word-Character Models. ACL 2016.

_ j     o      l      i

j     o    l     i _  

c    u    t     e     _

a               cat    EOS un   UNK

un chat



Outline

• Computing softmax for a large vocabulary is slow!

• Hierarchical softmax

• Even a large vocabulary has OOV words:

• Copy mechanism 

• Sub-word modeling

• Word-character hybrid models

• Byte-pair encoding



Byte-pair encoding

• Simple way to handle open vocabulary:
• Start with characters
• Iteratively replace the most frequent pair with one unit
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• Simple way to handle open vocabulary:
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• Iteratively replace the most frequent pair with one unit
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Byte-pair encoding

• Simple way to handle open vocabulary:
• Start with characters
• Iteratively replace the most frequent pair with one unit

• End whenever you reach the vocabulary size limit

• Stick to that vocabulary of sub-word units

• Apply the same algorithm to test sentences
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Why is it so useful?

Denkowski, Neubig. Stronger Baselines for Trustable Results in Neural Machine Translation, 2017.



BLEU score comparison

• Byte-pair encoding improves BLEU score
• It is a nice and simple way to handle the vocabulary
• Very common trick in modern NMT

Denkowski, Neubig. Stronger Baselines for Trustable Results in Neural Machine Translation, 2017.


